Evaluate
1024
Factor
2^{10}
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)102400}\\\end{array}
Use the 1^{st} digit 1 from dividend 102400
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)102400}\\\end{array}
Since 1 is less than 100, use the next digit 0 from dividend 102400 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)102400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 102400
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)102400}\\\end{array}
Since 10 is less than 100, use the next digit 2 from dividend 102400 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)102400}\\\end{array}
Use the 3^{rd} digit 2 from dividend 102400
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}2\\\end{array}
Find closest multiple of 100 to 102. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 102 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{100)}001\phantom{7}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}24\\\end{array}
Use the 4^{th} digit 4 from dividend 102400
\begin{array}{l}\phantom{100)}0010\phantom{8}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}24\\\end{array}
Since 24 is less than 100, use the next digit 0 from dividend 102400 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0010\phantom{9}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}240\\\end{array}
Use the 5^{th} digit 0 from dividend 102400
\begin{array}{l}\phantom{100)}00102\phantom{10}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}240\\\phantom{100)}\underline{\phantom{99}200\phantom{9}}\\\phantom{100)999}40\\\end{array}
Find closest multiple of 100 to 240. We see that 2 \times 100 = 200 is the nearest. Now subtract 200 from 240 to get reminder 40. Add 2 to quotient.
\begin{array}{l}\phantom{100)}00102\phantom{11}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}240\\\phantom{100)}\underline{\phantom{99}200\phantom{9}}\\\phantom{100)999}400\\\end{array}
Use the 6^{th} digit 0 from dividend 102400
\begin{array}{l}\phantom{100)}001024\phantom{12}\\100\overline{)102400}\\\phantom{100)}\underline{\phantom{}100\phantom{999}}\\\phantom{100)99}240\\\phantom{100)}\underline{\phantom{99}200\phantom{9}}\\\phantom{100)999}400\\\phantom{100)}\underline{\phantom{999}400\phantom{}}\\\phantom{100)999999}0\\\end{array}
Find closest multiple of 100 to 400. We see that 4 \times 100 = 400 is the nearest. Now subtract 400 from 400 to get reminder 0. Add 4 to quotient.
\text{Quotient: }1024 \text{Reminder: }0
Since 0 is less than 100, stop the division. The reminder is 0. The topmost line 001024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1024.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}