Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{6690)}\phantom{1}\\6690\overline{)10035}\\\end{array}
Use the 1^{st} digit 1 from dividend 10035
\begin{array}{l}\phantom{6690)}0\phantom{2}\\6690\overline{)10035}\\\end{array}
Since 1 is less than 6690, use the next digit 0 from dividend 10035 and add 0 to the quotient
\begin{array}{l}\phantom{6690)}0\phantom{3}\\6690\overline{)10035}\\\end{array}
Use the 2^{nd} digit 0 from dividend 10035
\begin{array}{l}\phantom{6690)}00\phantom{4}\\6690\overline{)10035}\\\end{array}
Since 10 is less than 6690, use the next digit 0 from dividend 10035 and add 0 to the quotient
\begin{array}{l}\phantom{6690)}00\phantom{5}\\6690\overline{)10035}\\\end{array}
Use the 3^{rd} digit 0 from dividend 10035
\begin{array}{l}\phantom{6690)}000\phantom{6}\\6690\overline{)10035}\\\end{array}
Since 100 is less than 6690, use the next digit 3 from dividend 10035 and add 0 to the quotient
\begin{array}{l}\phantom{6690)}000\phantom{7}\\6690\overline{)10035}\\\end{array}
Use the 4^{th} digit 3 from dividend 10035
\begin{array}{l}\phantom{6690)}0000\phantom{8}\\6690\overline{)10035}\\\end{array}
Since 1003 is less than 6690, use the next digit 5 from dividend 10035 and add 0 to the quotient
\begin{array}{l}\phantom{6690)}0000\phantom{9}\\6690\overline{)10035}\\\end{array}
Use the 5^{th} digit 5 from dividend 10035
\begin{array}{l}\phantom{6690)}00001\phantom{10}\\6690\overline{)10035}\\\phantom{6690)}\underline{\phantom{9}6690\phantom{}}\\\phantom{6690)9}3345\\\end{array}
Find closest multiple of 6690 to 10035. We see that 1 \times 6690 = 6690 is the nearest. Now subtract 6690 from 10035 to get reminder 3345. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }3345
Since 3345 is less than 6690, stop the division. The reminder is 3345. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}