Solve for h
h=-\frac{x}{2-x}
x\neq 0\text{ and }x\neq 2
Solve for x
x=-\frac{2h}{1-h}
h\neq 0\text{ and }h\neq 1
Graph
Share
Copied to clipboard
x\times 1000+h\times 2000=1000hx
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by hx, the least common multiple of h,x.
x\times 1000+h\times 2000-1000hx=0
Subtract 1000hx from both sides.
h\times 2000-1000hx=-x\times 1000
Subtract x\times 1000 from both sides. Anything subtracted from zero gives its negation.
h\times 2000-1000hx=-1000x
Multiply -1 and 1000 to get -1000.
\left(2000-1000x\right)h=-1000x
Combine all terms containing h.
\frac{\left(2000-1000x\right)h}{2000-1000x}=-\frac{1000x}{2000-1000x}
Divide both sides by 2000-1000x.
h=-\frac{1000x}{2000-1000x}
Dividing by 2000-1000x undoes the multiplication by 2000-1000x.
h=-\frac{x}{2-x}
Divide -1000x by 2000-1000x.
h=-\frac{x}{2-x}\text{, }h\neq 0
Variable h cannot be equal to 0.
x\times 1000+h\times 2000=1000hx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by hx, the least common multiple of h,x.
x\times 1000+h\times 2000-1000hx=0
Subtract 1000hx from both sides.
x\times 1000-1000hx=-h\times 2000
Subtract h\times 2000 from both sides. Anything subtracted from zero gives its negation.
x\times 1000-1000hx=-2000h
Multiply -1 and 2000 to get -2000.
\left(1000-1000h\right)x=-2000h
Combine all terms containing x.
\frac{\left(1000-1000h\right)x}{1000-1000h}=-\frac{2000h}{1000-1000h}
Divide both sides by 1000-1000h.
x=-\frac{2000h}{1000-1000h}
Dividing by 1000-1000h undoes the multiplication by 1000-1000h.
x=-\frac{2h}{1-h}
Divide -2000h by 1000-1000h.
x=-\frac{2h}{1-h}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}