Evaluate
\frac{500}{93}\approx 5.376344086
Factor
\frac{2 ^ {2} \cdot 5 ^ {3}}{3 \cdot 31} = 5\frac{35}{93} = 5.376344086021505
Share
Copied to clipboard
\begin{array}{l}\phantom{186)}\phantom{1}\\186\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{186)}0\phantom{2}\\186\overline{)1000}\\\end{array}
Since 1 is less than 186, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{186)}0\phantom{3}\\186\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{186)}00\phantom{4}\\186\overline{)1000}\\\end{array}
Since 10 is less than 186, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{186)}00\phantom{5}\\186\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{186)}000\phantom{6}\\186\overline{)1000}\\\end{array}
Since 100 is less than 186, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{186)}000\phantom{7}\\186\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{186)}0005\phantom{8}\\186\overline{)1000}\\\phantom{186)}\underline{\phantom{9}930\phantom{}}\\\phantom{186)99}70\\\end{array}
Find closest multiple of 186 to 1000. We see that 5 \times 186 = 930 is the nearest. Now subtract 930 from 1000 to get reminder 70. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }70
Since 70 is less than 186, stop the division. The reminder is 70. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}