Solve for k
k = \frac{190964761}{155890} = 1224\frac{155401}{155890} \approx 1224.996863173
Share
Copied to clipboard
\frac{25\times 125\left(276-224\times 248\right)^{2}}{119\times 262\times 500^{2}}=k
Cancel out 2\times 4 in both numerator and denominator.
\frac{3125\left(276-224\times 248\right)^{2}}{119\times 262\times 500^{2}}=k
Multiply 25 and 125 to get 3125.
\frac{3125\left(276-55552\right)^{2}}{119\times 262\times 500^{2}}=k
Multiply 224 and 248 to get 55552.
\frac{3125\left(-55276\right)^{2}}{119\times 262\times 500^{2}}=k
Subtract 55552 from 276 to get -55276.
\frac{3125\times 3055436176}{119\times 262\times 500^{2}}=k
Calculate -55276 to the power of 2 and get 3055436176.
\frac{9548238050000}{119\times 262\times 500^{2}}=k
Multiply 3125 and 3055436176 to get 9548238050000.
\frac{9548238050000}{31178\times 500^{2}}=k
Multiply 119 and 262 to get 31178.
\frac{9548238050000}{31178\times 250000}=k
Calculate 500 to the power of 2 and get 250000.
\frac{9548238050000}{7794500000}=k
Multiply 31178 and 250000 to get 7794500000.
\frac{190964761}{155890}=k
Reduce the fraction \frac{9548238050000}{7794500000} to lowest terms by extracting and canceling out 50000.
k=\frac{190964761}{155890}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}