\frac { 1000 \cdot 2 - 10 ^ { - 6 } \cdot 10 } { 42,3 \cdot 3 \cdot 14 \cdot 2 \cdot 10 ^ { - 3 } }
Evaluate
\frac{199999999}{355320}\approx 562,872900484
Factor
\frac{89 \cdot 1447 \cdot 1553}{5 \cdot 7 \cdot 47 \cdot 2 ^ {3} \cdot 3 ^ {3}} = 562\frac{310159}{355320} = 562.8729004840707
Share
Copied to clipboard
\frac{1000\times 2-10^{-5}}{42,3\times 3\times 14\times 2\times 10^{-3}}
To multiply powers of the same base, add their exponents. Add -6 and 1 to get -5.
\frac{2000-10^{-5}}{42,3\times 3\times 14\times 2\times 10^{-3}}
Multiply 1000 and 2 to get 2000.
\frac{2000-\frac{1}{100000}}{42,3\times 3\times 14\times 2\times 10^{-3}}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{\frac{199999999}{100000}}{42,3\times 3\times 14\times 2\times 10^{-3}}
Subtract \frac{1}{100000} from 2000 to get \frac{199999999}{100000}.
\frac{\frac{199999999}{100000}}{126,9\times 14\times 2\times 10^{-3}}
Multiply 42,3 and 3 to get 126,9.
\frac{\frac{199999999}{100000}}{1776,6\times 2\times 10^{-3}}
Multiply 126,9 and 14 to get 1776,6.
\frac{\frac{199999999}{100000}}{3553,2\times 10^{-3}}
Multiply 1776,6 and 2 to get 3553,2.
\frac{\frac{199999999}{100000}}{3553,2\times \frac{1}{1000}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{199999999}{100000}}{\frac{8883}{2500}}
Multiply 3553,2 and \frac{1}{1000} to get \frac{8883}{2500}.
\frac{199999999}{100000}\times \frac{2500}{8883}
Divide \frac{199999999}{100000} by \frac{8883}{2500} by multiplying \frac{199999999}{100000} by the reciprocal of \frac{8883}{2500}.
\frac{199999999}{355320}
Multiply \frac{199999999}{100000} and \frac{2500}{8883} to get \frac{199999999}{355320}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}