Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1000\times 2-10^{-5}}{42,3\times 3\times 14\times 2\times 10^{-3}}
To multiply powers of the same base, add their exponents. Add -6 and 1 to get -5.
\frac{2000-10^{-5}}{42,3\times 3\times 14\times 2\times 10^{-3}}
Multiply 1000 and 2 to get 2000.
\frac{2000-\frac{1}{100000}}{42,3\times 3\times 14\times 2\times 10^{-3}}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{\frac{199999999}{100000}}{42,3\times 3\times 14\times 2\times 10^{-3}}
Subtract \frac{1}{100000} from 2000 to get \frac{199999999}{100000}.
\frac{\frac{199999999}{100000}}{126,9\times 14\times 2\times 10^{-3}}
Multiply 42,3 and 3 to get 126,9.
\frac{\frac{199999999}{100000}}{1776,6\times 2\times 10^{-3}}
Multiply 126,9 and 14 to get 1776,6.
\frac{\frac{199999999}{100000}}{3553,2\times 10^{-3}}
Multiply 1776,6 and 2 to get 3553,2.
\frac{\frac{199999999}{100000}}{3553,2\times \frac{1}{1000}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{199999999}{100000}}{\frac{8883}{2500}}
Multiply 3553,2 and \frac{1}{1000} to get \frac{8883}{2500}.
\frac{199999999}{100000}\times \frac{2500}{8883}
Divide \frac{199999999}{100000} by \frac{8883}{2500} by multiplying \frac{199999999}{100000} by the reciprocal of \frac{8883}{2500}.
\frac{199999999}{355320}
Multiply \frac{199999999}{100000} and \frac{2500}{8883} to get \frac{199999999}{355320}.