Evaluate
\frac{50\left(\sqrt{6}+3\sqrt{2}\right)}{3}\approx 111.535507165
Share
Copied to clipboard
\frac{25\left(\sqrt{6}+\sqrt{2}\right)}{\frac{\sqrt{3}}{2}}
Cancel out 4, the greatest common factor in 100 and 4.
\frac{25\left(\sqrt{6}+\sqrt{2}\right)\times 2}{\sqrt{3}}
Divide 25\left(\sqrt{6}+\sqrt{2}\right) by \frac{\sqrt{3}}{2} by multiplying 25\left(\sqrt{6}+\sqrt{2}\right) by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{50\left(\sqrt{6}+\sqrt{2}\right)}{\sqrt{3}}
Multiply 25 and 2 to get 50.
\frac{50\left(\sqrt{6}+\sqrt{2}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{50\left(\sqrt{6}+\sqrt{2}\right)}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{50\left(\sqrt{6}+\sqrt{2}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\left(50\sqrt{6}+50\sqrt{2}\right)\sqrt{3}}{3}
Use the distributive property to multiply 50 by \sqrt{6}+\sqrt{2}.
\frac{50\sqrt{6}\sqrt{3}+50\sqrt{2}\sqrt{3}}{3}
Use the distributive property to multiply 50\sqrt{6}+50\sqrt{2} by \sqrt{3}.
\frac{50\sqrt{3}\sqrt{2}\sqrt{3}+50\sqrt{2}\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{50\times 3\sqrt{2}+50\sqrt{2}\sqrt{3}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{150\sqrt{2}+50\sqrt{2}\sqrt{3}}{3}
Multiply 50 and 3 to get 150.
\frac{150\sqrt{2}+50\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}