Solve for x
x = -\frac{27}{2} = -13\frac{1}{2} = -13.5
Graph
Share
Copied to clipboard
2\left(10x-95-10x\right)-\left(10x-55\right)=2\times 0
Multiply both sides of the equation by 2.
2\left(-95\right)-\left(10x-55\right)=2\times 0
Combine 10x and -10x to get 0.
-190-\left(10x-55\right)=2\times 0
Multiply 2 and -95 to get -190.
-190-10x-\left(-55\right)=2\times 0
To find the opposite of 10x-55, find the opposite of each term.
-190-10x+55=2\times 0
The opposite of -55 is 55.
-135-10x=2\times 0
Add -190 and 55 to get -135.
-135-10x=0
Multiply 2 and 0 to get 0.
-10x=135
Add 135 to both sides. Anything plus zero gives itself.
x=\frac{135}{-10}
Divide both sides by -10.
x=-\frac{27}{2}
Reduce the fraction \frac{135}{-10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}