Solve for x
x=\frac{6\left(9z+11\right)}{5\left(6z+11\right)}
z\neq -\frac{11}{6}\text{ and }z\neq -\frac{4}{3}
Solve for z
z=-\frac{11\left(5x-6\right)}{6\left(5x-9\right)}
x\neq -\frac{2}{5}\text{ and }x\neq \frac{9}{5}
Quiz
Linear Equation
5 problems similar to:
\frac { 10 x - 3 } { 3 } + \frac { 5 x + 2 } { 4 + 3 z } = 5
Share
Copied to clipboard
\left(3z+4\right)\left(10x-3\right)+3\left(5x+2\right)=15\left(3z+4\right)
Multiply both sides of the equation by 3\left(3z+4\right), the least common multiple of 3,4+3z.
30zx-9z+40x-12+3\left(5x+2\right)=15\left(3z+4\right)
Use the distributive property to multiply 3z+4 by 10x-3.
30zx-9z+40x-12+15x+6=15\left(3z+4\right)
Use the distributive property to multiply 3 by 5x+2.
30zx-9z+55x-12+6=15\left(3z+4\right)
Combine 40x and 15x to get 55x.
30zx-9z+55x-6=15\left(3z+4\right)
Add -12 and 6 to get -6.
30zx-9z+55x-6=45z+60
Use the distributive property to multiply 15 by 3z+4.
30zx+55x-6=45z+60+9z
Add 9z to both sides.
30zx+55x-6=54z+60
Combine 45z and 9z to get 54z.
30zx+55x=54z+60+6
Add 6 to both sides.
30zx+55x=54z+66
Add 60 and 6 to get 66.
\left(30z+55\right)x=54z+66
Combine all terms containing x.
\frac{\left(30z+55\right)x}{30z+55}=\frac{54z+66}{30z+55}
Divide both sides by 30z+55.
x=\frac{54z+66}{30z+55}
Dividing by 30z+55 undoes the multiplication by 30z+55.
x=\frac{6\left(9z+11\right)}{5\left(6z+11\right)}
Divide 54z+66 by 30z+55.
\left(3z+4\right)\left(10x-3\right)+3\left(5x+2\right)=15\left(3z+4\right)
Variable z cannot be equal to -\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3z+4\right), the least common multiple of 3,4+3z.
30zx-9z+40x-12+3\left(5x+2\right)=15\left(3z+4\right)
Use the distributive property to multiply 3z+4 by 10x-3.
30zx-9z+40x-12+15x+6=15\left(3z+4\right)
Use the distributive property to multiply 3 by 5x+2.
30zx-9z+55x-12+6=15\left(3z+4\right)
Combine 40x and 15x to get 55x.
30zx-9z+55x-6=15\left(3z+4\right)
Add -12 and 6 to get -6.
30zx-9z+55x-6=45z+60
Use the distributive property to multiply 15 by 3z+4.
30zx-9z+55x-6-45z=60
Subtract 45z from both sides.
30zx-54z+55x-6=60
Combine -9z and -45z to get -54z.
30zx-54z-6=60-55x
Subtract 55x from both sides.
30zx-54z=60-55x+6
Add 6 to both sides.
30zx-54z=66-55x
Add 60 and 6 to get 66.
\left(30x-54\right)z=66-55x
Combine all terms containing z.
\frac{\left(30x-54\right)z}{30x-54}=\frac{66-55x}{30x-54}
Divide both sides by 30x-54.
z=\frac{66-55x}{30x-54}
Dividing by 30x-54 undoes the multiplication by 30x-54.
z=\frac{11\left(6-5x\right)}{6\left(5x-9\right)}
Divide 66-55x by 30x-54.
z=\frac{11\left(6-5x\right)}{6\left(5x-9\right)}\text{, }z\neq -\frac{4}{3}
Variable z cannot be equal to -\frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}