Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(10p^{3}+5p^{2}-15p\right)\left(p^{2}+2p-24\right)}{\left(p^{2}+5p-6\right)\left(4p^{2}-10p-24\right)}
Divide \frac{10p^{3}+5p^{2}-15p}{p^{2}+5p-6} by \frac{4p^{2}-10p-24}{p^{2}+2p-24} by multiplying \frac{10p^{3}+5p^{2}-15p}{p^{2}+5p-6} by the reciprocal of \frac{4p^{2}-10p-24}{p^{2}+2p-24}.
\frac{5p\left(p-4\right)\left(p-1\right)\left(p+6\right)\left(2p+3\right)}{2\left(p-4\right)\left(p-1\right)\left(p+6\right)\left(2p+3\right)}
Factor the expressions that are not already factored.
\frac{5p}{2}
Cancel out \left(p-4\right)\left(p-1\right)\left(p+6\right)\left(2p+3\right) in both numerator and denominator.
\frac{\left(10p^{3}+5p^{2}-15p\right)\left(p^{2}+2p-24\right)}{\left(p^{2}+5p-6\right)\left(4p^{2}-10p-24\right)}
Divide \frac{10p^{3}+5p^{2}-15p}{p^{2}+5p-6} by \frac{4p^{2}-10p-24}{p^{2}+2p-24} by multiplying \frac{10p^{3}+5p^{2}-15p}{p^{2}+5p-6} by the reciprocal of \frac{4p^{2}-10p-24}{p^{2}+2p-24}.
\frac{5p\left(p-4\right)\left(p-1\right)\left(p+6\right)\left(2p+3\right)}{2\left(p-4\right)\left(p-1\right)\left(p+6\right)\left(2p+3\right)}
Factor the expressions that are not already factored.
\frac{5p}{2}
Cancel out \left(p-4\right)\left(p-1\right)\left(p+6\right)\left(2p+3\right) in both numerator and denominator.