Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(10k^{2}-90k\right)\left(16k^{2}+32k\right)}{\left(20k^{2}+40k\right)\left(k^{2}-17k+72\right)}
Divide \frac{10k^{2}-90k}{20k^{2}+40k} by \frac{k^{2}-17k+72}{16k^{2}+32k} by multiplying \frac{10k^{2}-90k}{20k^{2}+40k} by the reciprocal of \frac{k^{2}-17k+72}{16k^{2}+32k}.
\frac{10\times 16\left(k-9\right)\left(k+2\right)k^{2}}{20k\left(k-9\right)\left(k-8\right)\left(k+2\right)}
Factor the expressions that are not already factored.
\frac{8k}{k-8}
Cancel out 2\times 10k\left(k-9\right)\left(k+2\right) in both numerator and denominator.
\frac{\left(10k^{2}-90k\right)\left(16k^{2}+32k\right)}{\left(20k^{2}+40k\right)\left(k^{2}-17k+72\right)}
Divide \frac{10k^{2}-90k}{20k^{2}+40k} by \frac{k^{2}-17k+72}{16k^{2}+32k} by multiplying \frac{10k^{2}-90k}{20k^{2}+40k} by the reciprocal of \frac{k^{2}-17k+72}{16k^{2}+32k}.
\frac{10\times 16\left(k-9\right)\left(k+2\right)k^{2}}{20k\left(k-9\right)\left(k-8\right)\left(k+2\right)}
Factor the expressions that are not already factored.
\frac{8k}{k-8}
Cancel out 2\times 10k\left(k-9\right)\left(k+2\right) in both numerator and denominator.