Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{10}{\left(x-2\right)\left(x+3\right)}-\frac{8}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}+x-6. Factor x^{2}-4.
\frac{10\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}-\frac{8\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+3\right) and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right)\left(x+3\right). Multiply \frac{10}{\left(x-2\right)\left(x+3\right)} times \frac{x+2}{x+2}. Multiply \frac{8}{\left(x-2\right)\left(x+2\right)} times \frac{x+3}{x+3}.
\frac{10\left(x+2\right)-8\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Since \frac{10\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)} and \frac{8\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{10x+20-8x-24}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in 10\left(x+2\right)-8\left(x+3\right).
\frac{2x-4}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 10x+20-8x-24.
\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{2x-4}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}.
\frac{2}{\left(x+2\right)\left(x+3\right)}
Cancel out x-2 in both numerator and denominator.
\frac{2}{x^{2}+5x+6}
Expand \left(x+2\right)\left(x+3\right).