Solve for a
a=\frac{10bc-7c+10}{7\left(bc+1\right)}
b\neq -\frac{1}{c}\text{ and }c\neq 0
Solve for b
b=-\frac{7a+7c-10}{c\left(7a-10\right)}
a\neq \frac{10}{7}\text{ and }c\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { 10 } { 7 } = a + \frac { 1 } { b + \frac { 1 } { c } }
Share
Copied to clipboard
\frac{10}{7}=a+\frac{1}{\frac{bc}{c}+\frac{1}{c}}
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{c}{c}.
\frac{10}{7}=a+\frac{1}{\frac{bc+1}{c}}
Since \frac{bc}{c} and \frac{1}{c} have the same denominator, add them by adding their numerators.
\frac{10}{7}=a+\frac{c}{bc+1}
Divide 1 by \frac{bc+1}{c} by multiplying 1 by the reciprocal of \frac{bc+1}{c}.
\frac{10}{7}=\frac{a\left(bc+1\right)}{bc+1}+\frac{c}{bc+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{bc+1}{bc+1}.
\frac{10}{7}=\frac{a\left(bc+1\right)+c}{bc+1}
Since \frac{a\left(bc+1\right)}{bc+1} and \frac{c}{bc+1} have the same denominator, add them by adding their numerators.
\frac{10}{7}=\frac{abc+a+c}{bc+1}
Do the multiplications in a\left(bc+1\right)+c.
\frac{abc+a+c}{bc+1}=\frac{10}{7}
Swap sides so that all variable terms are on the left hand side.
7\left(abc+a+c\right)=10\left(bc+1\right)
Multiply both sides of the equation by 7\left(bc+1\right), the least common multiple of bc+1,7.
7abc+7a+7c=10\left(bc+1\right)
Use the distributive property to multiply 7 by abc+a+c.
7abc+7a+7c=10bc+10
Use the distributive property to multiply 10 by bc+1.
7abc+7a=10bc+10-7c
Subtract 7c from both sides.
\left(7bc+7\right)a=10bc+10-7c
Combine all terms containing a.
\left(7bc+7\right)a=10bc-7c+10
The equation is in standard form.
\frac{\left(7bc+7\right)a}{7bc+7}=\frac{10bc-7c+10}{7bc+7}
Divide both sides by 7bc+7.
a=\frac{10bc-7c+10}{7bc+7}
Dividing by 7bc+7 undoes the multiplication by 7bc+7.
a=\frac{10bc-7c+10}{7\left(bc+1\right)}
Divide 10bc-7c+10 by 7bc+7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}