Evaluate
\frac{13}{5}=2.6
Factor
\frac{13}{5} = 2\frac{3}{5} = 2.6
Share
Copied to clipboard
2|\frac{1}{5}-\left(\frac{2}{3}+\frac{5}{6}\right)|
Divide 10 by 5 to get 2.
2|\frac{1}{5}-\left(\frac{4}{6}+\frac{5}{6}\right)|
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{5}{6} to fractions with denominator 6.
2|\frac{1}{5}-\frac{4+5}{6}|
Since \frac{4}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
2|\frac{1}{5}-\frac{9}{6}|
Add 4 and 5 to get 9.
2|\frac{1}{5}-\frac{3}{2}|
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
2|\frac{2}{10}-\frac{15}{10}|
Least common multiple of 5 and 2 is 10. Convert \frac{1}{5} and \frac{3}{2} to fractions with denominator 10.
2|\frac{2-15}{10}|
Since \frac{2}{10} and \frac{15}{10} have the same denominator, subtract them by subtracting their numerators.
2|-\frac{13}{10}|
Subtract 15 from 2 to get -13.
2\times \frac{13}{10}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{13}{10} is \frac{13}{10}.
\frac{2\times 13}{10}
Express 2\times \frac{13}{10} as a single fraction.
\frac{26}{10}
Multiply 2 and 13 to get 26.
\frac{13}{5}
Reduce the fraction \frac{26}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}