Solve for a
a=-\frac{3b}{8}+\frac{3}{64}
Solve for b
b=-\frac{8a}{3}+\frac{1}{8}
Share
Copied to clipboard
\frac{10}{3}=a\times \frac{64}{9}+b\times \frac{8}{3}+3
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
a\times \frac{64}{9}+b\times \frac{8}{3}+3=\frac{10}{3}
Swap sides so that all variable terms are on the left hand side.
a\times \frac{64}{9}+3=\frac{10}{3}-b\times \frac{8}{3}
Subtract b\times \frac{8}{3} from both sides.
a\times \frac{64}{9}=\frac{10}{3}-b\times \frac{8}{3}-3
Subtract 3 from both sides.
a\times \frac{64}{9}=\frac{10}{3}-\frac{8}{3}b-3
Multiply -1 and \frac{8}{3} to get -\frac{8}{3}.
a\times \frac{64}{9}=\frac{1}{3}-\frac{8}{3}b
Subtract 3 from \frac{10}{3} to get \frac{1}{3}.
\frac{64}{9}a=\frac{1-8b}{3}
The equation is in standard form.
\frac{\frac{64}{9}a}{\frac{64}{9}}=\frac{1-8b}{3\times \frac{64}{9}}
Divide both sides of the equation by \frac{64}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{1-8b}{3\times \frac{64}{9}}
Dividing by \frac{64}{9} undoes the multiplication by \frac{64}{9}.
a=-\frac{3b}{8}+\frac{3}{64}
Divide \frac{1-8b}{3} by \frac{64}{9} by multiplying \frac{1-8b}{3} by the reciprocal of \frac{64}{9}.
\frac{10}{3}=a\times \frac{64}{9}+b\times \frac{8}{3}+3
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
a\times \frac{64}{9}+b\times \frac{8}{3}+3=\frac{10}{3}
Swap sides so that all variable terms are on the left hand side.
b\times \frac{8}{3}+3=\frac{10}{3}-a\times \frac{64}{9}
Subtract a\times \frac{64}{9} from both sides.
b\times \frac{8}{3}=\frac{10}{3}-a\times \frac{64}{9}-3
Subtract 3 from both sides.
b\times \frac{8}{3}=\frac{10}{3}-\frac{64}{9}a-3
Multiply -1 and \frac{64}{9} to get -\frac{64}{9}.
b\times \frac{8}{3}=\frac{1}{3}-\frac{64}{9}a
Subtract 3 from \frac{10}{3} to get \frac{1}{3}.
\frac{8}{3}b=-\frac{64a}{9}+\frac{1}{3}
The equation is in standard form.
\frac{\frac{8}{3}b}{\frac{8}{3}}=\frac{-\frac{64a}{9}+\frac{1}{3}}{\frac{8}{3}}
Divide both sides of the equation by \frac{8}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{-\frac{64a}{9}+\frac{1}{3}}{\frac{8}{3}}
Dividing by \frac{8}{3} undoes the multiplication by \frac{8}{3}.
b=-\frac{8a}{3}+\frac{1}{8}
Divide \frac{1}{3}-\frac{64a}{9} by \frac{8}{3} by multiplying \frac{1}{3}-\frac{64a}{9} by the reciprocal of \frac{8}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}