Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{10}{3}=a\times \frac{64}{9}+b\times \frac{8}{3}+3
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
a\times \frac{64}{9}+b\times \frac{8}{3}+3=\frac{10}{3}
Swap sides so that all variable terms are on the left hand side.
a\times \frac{64}{9}+3=\frac{10}{3}-b\times \frac{8}{3}
Subtract b\times \frac{8}{3} from both sides.
a\times \frac{64}{9}=\frac{10}{3}-b\times \frac{8}{3}-3
Subtract 3 from both sides.
a\times \frac{64}{9}=\frac{10}{3}-\frac{8}{3}b-3
Multiply -1 and \frac{8}{3} to get -\frac{8}{3}.
a\times \frac{64}{9}=\frac{1}{3}-\frac{8}{3}b
Subtract 3 from \frac{10}{3} to get \frac{1}{3}.
\frac{64}{9}a=\frac{1-8b}{3}
The equation is in standard form.
\frac{\frac{64}{9}a}{\frac{64}{9}}=\frac{1-8b}{3\times \frac{64}{9}}
Divide both sides of the equation by \frac{64}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{1-8b}{3\times \frac{64}{9}}
Dividing by \frac{64}{9} undoes the multiplication by \frac{64}{9}.
a=-\frac{3b}{8}+\frac{3}{64}
Divide \frac{1-8b}{3} by \frac{64}{9} by multiplying \frac{1-8b}{3} by the reciprocal of \frac{64}{9}.
\frac{10}{3}=a\times \frac{64}{9}+b\times \frac{8}{3}+3
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
a\times \frac{64}{9}+b\times \frac{8}{3}+3=\frac{10}{3}
Swap sides so that all variable terms are on the left hand side.
b\times \frac{8}{3}+3=\frac{10}{3}-a\times \frac{64}{9}
Subtract a\times \frac{64}{9} from both sides.
b\times \frac{8}{3}=\frac{10}{3}-a\times \frac{64}{9}-3
Subtract 3 from both sides.
b\times \frac{8}{3}=\frac{10}{3}-\frac{64}{9}a-3
Multiply -1 and \frac{64}{9} to get -\frac{64}{9}.
b\times \frac{8}{3}=\frac{1}{3}-\frac{64}{9}a
Subtract 3 from \frac{10}{3} to get \frac{1}{3}.
\frac{8}{3}b=-\frac{64a}{9}+\frac{1}{3}
The equation is in standard form.
\frac{\frac{8}{3}b}{\frac{8}{3}}=\frac{-\frac{64a}{9}+\frac{1}{3}}{\frac{8}{3}}
Divide both sides of the equation by \frac{8}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{-\frac{64a}{9}+\frac{1}{3}}{\frac{8}{3}}
Dividing by \frac{8}{3} undoes the multiplication by \frac{8}{3}.
b=-\frac{8a}{3}+\frac{1}{8}
Divide \frac{1}{3}-\frac{64a}{9} by \frac{8}{3} by multiplying \frac{1}{3}-\frac{64a}{9} by the reciprocal of \frac{8}{3}.