Solve for f
f = -\frac{245}{57} = -4\frac{17}{57} \approx -4.298245614
Share
Copied to clipboard
-\frac{1}{3}-\frac{1}{5}f=\frac{10}{19}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{5}f=\frac{10}{19}+\frac{1}{3}
Add \frac{1}{3} to both sides.
-\frac{1}{5}f=\frac{30}{57}+\frac{19}{57}
Least common multiple of 19 and 3 is 57. Convert \frac{10}{19} and \frac{1}{3} to fractions with denominator 57.
-\frac{1}{5}f=\frac{30+19}{57}
Since \frac{30}{57} and \frac{19}{57} have the same denominator, add them by adding their numerators.
-\frac{1}{5}f=\frac{49}{57}
Add 30 and 19 to get 49.
f=\frac{49}{57}\left(-5\right)
Multiply both sides by -5, the reciprocal of -\frac{1}{5}.
f=\frac{49\left(-5\right)}{57}
Express \frac{49}{57}\left(-5\right) as a single fraction.
f=\frac{-245}{57}
Multiply 49 and -5 to get -245.
f=-\frac{245}{57}
Fraction \frac{-245}{57} can be rewritten as -\frac{245}{57} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}