Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\left(-5-\sqrt{15}\right)}{\left(-5+\sqrt{15}\right)\left(-5-\sqrt{15}\right)}
Rationalize the denominator of \frac{10}{-5+\sqrt{15}} by multiplying numerator and denominator by -5-\sqrt{15}.
\frac{10\left(-5-\sqrt{15}\right)}{\left(-5\right)^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(-5+\sqrt{15}\right)\left(-5-\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(-5-\sqrt{15}\right)}{25-15}
Square -5. Square \sqrt{15}.
\frac{10\left(-5-\sqrt{15}\right)}{10}
Subtract 15 from 25 to get 10.
-5-\sqrt{15}
Cancel out 10 and 10.