Evaluate
4
Factor
2^{2}
Quiz
Arithmetic
5 problems similar to:
\frac { 10 } { \sqrt { 6 } + 1 } + \frac { 6 } { 3 + \sqrt { 6 } }
Share
Copied to clipboard
\frac{10\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\frac{6}{3+\sqrt{6}}
Rationalize the denominator of \frac{10}{\sqrt{6}+1} by multiplying numerator and denominator by \sqrt{6}-1.
\frac{10\left(\sqrt{6}-1\right)}{\left(\sqrt{6}\right)^{2}-1^{2}}+\frac{6}{3+\sqrt{6}}
Consider \left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(\sqrt{6}-1\right)}{6-1}+\frac{6}{3+\sqrt{6}}
Square \sqrt{6}. Square 1.
\frac{10\left(\sqrt{6}-1\right)}{5}+\frac{6}{3+\sqrt{6}}
Subtract 1 from 6 to get 5.
2\left(\sqrt{6}-1\right)+\frac{6}{3+\sqrt{6}}
Divide 10\left(\sqrt{6}-1\right) by 5 to get 2\left(\sqrt{6}-1\right).
2\left(\sqrt{6}-1\right)+\frac{6\left(3-\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}
Rationalize the denominator of \frac{6}{3+\sqrt{6}} by multiplying numerator and denominator by 3-\sqrt{6}.
2\left(\sqrt{6}-1\right)+\frac{6\left(3-\sqrt{6}\right)}{3^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\left(\sqrt{6}-1\right)+\frac{6\left(3-\sqrt{6}\right)}{9-6}
Square 3. Square \sqrt{6}.
2\left(\sqrt{6}-1\right)+\frac{6\left(3-\sqrt{6}\right)}{3}
Subtract 6 from 9 to get 3.
2\left(\sqrt{6}-1\right)+2\left(3-\sqrt{6}\right)
Divide 6\left(3-\sqrt{6}\right) by 3 to get 2\left(3-\sqrt{6}\right).
2\sqrt{6}-2+2\left(3-\sqrt{6}\right)
Use the distributive property to multiply 2 by \sqrt{6}-1.
2\sqrt{6}-2+6-2\sqrt{6}
Use the distributive property to multiply 2 by 3-\sqrt{6}.
2\sqrt{6}+4-2\sqrt{6}
Add -2 and 6 to get 4.
4
Combine 2\sqrt{6} and -2\sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}