Evaluate
\frac{51}{5\left(s+0.2\right)\left(s+1\right)s^{2}}
Expand
\frac{51}{5\left(s+0.2\right)\left(s+1\right)s^{2}}
Share
Copied to clipboard
\frac{2\left(0.1+5\right)}{\left(s+0.2\right)\left(s+1\right)s^{2}}
Cancel out 5 in both numerator and denominator.
\frac{2\times 5.1}{\left(s+0.2\right)\left(s+1\right)s^{2}}
Add 0.1 and 5 to get 5.1.
\frac{10.2}{\left(s+0.2\right)\left(s+1\right)s^{2}}
Multiply 2 and 5.1 to get 10.2.
\frac{10.2}{\left(s^{2}+1.2s+0.2\right)s^{2}}
Use the distributive property to multiply s+0.2 by s+1 and combine like terms.
\frac{10.2}{s^{4}+1.2s^{3}+0.2s^{2}}
Use the distributive property to multiply s^{2}+1.2s+0.2 by s^{2}.
\frac{2\left(0.1+5\right)}{\left(s+0.2\right)\left(s+1\right)s^{2}}
Cancel out 5 in both numerator and denominator.
\frac{2\times 5.1}{\left(s+0.2\right)\left(s+1\right)s^{2}}
Add 0.1 and 5 to get 5.1.
\frac{10.2}{\left(s+0.2\right)\left(s+1\right)s^{2}}
Multiply 2 and 5.1 to get 10.2.
\frac{10.2}{\left(s^{2}+1.2s+0.2\right)s^{2}}
Use the distributive property to multiply s+0.2 by s+1 and combine like terms.
\frac{10.2}{s^{4}+1.2s^{3}+0.2s^{2}}
Use the distributive property to multiply s^{2}+1.2s+0.2 by s^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}