Solve for P_V
P_{V} = \frac{32000000 \cdot 2 ^ {\frac{2}{3}}}{21} \approx 2418896.841094399
Share
Copied to clipboard
10^{5}\times 16^{\frac{5}{3}}=P_{V}\times 4.2^{\frac{3}{3}}
Variable P_{V} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by P_{V}.
100000\times 16^{\frac{5}{3}}=P_{V}\times 4.2^{\frac{3}{3}}
Calculate 10 to the power of 5 and get 100000.
100000\times 16^{\frac{5}{3}}=P_{V}\times 4.2^{1}
Divide 3 by 3 to get 1.
100000\times 16^{\frac{5}{3}}=P_{V}\times 4.2
Calculate 4.2 to the power of 1 and get 4.2.
P_{V}\times 4.2=100000\times 16^{\frac{5}{3}}
Swap sides so that all variable terms are on the left hand side.
4.2P_{V}=6400000\times 2^{\frac{2}{3}}
The equation is in standard form.
\frac{4.2P_{V}}{4.2}=\frac{6400000\times 2^{\frac{2}{3}}}{4.2}
Divide both sides of the equation by 4.2, which is the same as multiplying both sides by the reciprocal of the fraction.
P_{V}=\frac{6400000\times 2^{\frac{2}{3}}}{4.2}
Dividing by 4.2 undoes the multiplication by 4.2.
P_{V}=\frac{32000000\times 2^{\frac{2}{3}}}{21}
Divide 6400000\times 2^{\frac{2}{3}} by 4.2 by multiplying 6400000\times 2^{\frac{2}{3}} by the reciprocal of 4.2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}