Solve for α
\alpha =10\sqrt{7}\approx 26.457513111
\alpha =-10\sqrt{7}\approx -26.457513111
Share
Copied to clipboard
\frac{100+20^{2}-\alpha ^{2}}{2\times 10\times 20}=-\frac{1}{2}
Calculate 10 to the power of 2 and get 100.
\frac{100+400-\alpha ^{2}}{2\times 10\times 20}=-\frac{1}{2}
Calculate 20 to the power of 2 and get 400.
\frac{500-\alpha ^{2}}{2\times 10\times 20}=-\frac{1}{2}
Add 100 and 400 to get 500.
\frac{500-\alpha ^{2}}{2\times 10\times 20}+\frac{1}{2}=0
Add \frac{1}{2} to both sides.
\frac{500-\alpha ^{2}}{400}+\frac{200}{400}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 10\times 20 and 2 is 400. Multiply \frac{1}{2} times \frac{200}{200}.
\frac{500-\alpha ^{2}+200}{400}=0
Since \frac{500-\alpha ^{2}}{400} and \frac{200}{400} have the same denominator, add them by adding their numerators.
\frac{700-\alpha ^{2}}{400}=0
Combine like terms in 500-\alpha ^{2}+200.
\frac{7}{4}-\frac{1}{400}\alpha ^{2}=0
Divide each term of 700-\alpha ^{2} by 400 to get \frac{7}{4}-\frac{1}{400}\alpha ^{2}.
-\frac{1}{400}\alpha ^{2}+\frac{7}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
\alpha =\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{400}\right)\times \frac{7}{4}}}{2\left(-\frac{1}{400}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{400} for a, 0 for b, and \frac{7}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\alpha =\frac{0±\sqrt{-4\left(-\frac{1}{400}\right)\times \frac{7}{4}}}{2\left(-\frac{1}{400}\right)}
Square 0.
\alpha =\frac{0±\sqrt{\frac{1}{100}\times \frac{7}{4}}}{2\left(-\frac{1}{400}\right)}
Multiply -4 times -\frac{1}{400}.
\alpha =\frac{0±\sqrt{\frac{7}{400}}}{2\left(-\frac{1}{400}\right)}
Multiply \frac{1}{100} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\alpha =\frac{0±\frac{\sqrt{7}}{20}}{2\left(-\frac{1}{400}\right)}
Take the square root of \frac{7}{400}.
\alpha =\frac{0±\frac{\sqrt{7}}{20}}{-\frac{1}{200}}
Multiply 2 times -\frac{1}{400}.
\alpha =-10\sqrt{7}
Now solve the equation \alpha =\frac{0±\frac{\sqrt{7}}{20}}{-\frac{1}{200}} when ± is plus.
\alpha =10\sqrt{7}
Now solve the equation \alpha =\frac{0±\frac{\sqrt{7}}{20}}{-\frac{1}{200}} when ± is minus.
\alpha =-10\sqrt{7} \alpha =10\sqrt{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}