Solve for c
c=\frac{x^{3}-1840}{185}
x\neq -\sqrt[3]{10}
Solve for x
x=\sqrt[3]{185c+1840}
c\neq -10
Graph
Share
Copied to clipboard
10+x^{3}=185\left(c+10\right)
Variable c cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by c+10.
10+x^{3}=185c+1850
Use the distributive property to multiply 185 by c+10.
185c+1850=10+x^{3}
Swap sides so that all variable terms are on the left hand side.
185c=10+x^{3}-1850
Subtract 1850 from both sides.
185c=-1840+x^{3}
Subtract 1850 from 10 to get -1840.
185c=x^{3}-1840
The equation is in standard form.
\frac{185c}{185}=\frac{x^{3}-1840}{185}
Divide both sides by 185.
c=\frac{x^{3}-1840}{185}
Dividing by 185 undoes the multiplication by 185.
c=\frac{x^{3}}{185}-\frac{368}{37}
Divide -1840+x^{3} by 185.
c=\frac{x^{3}}{185}-\frac{368}{37}\text{, }c\neq -10
Variable c cannot be equal to -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}