Solve for x
x = \frac{1560}{407} = 3\frac{339}{407} \approx 3.832923833
Graph
Share
Copied to clipboard
13\left(10+\frac{13}{12}x\right)=48x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 52x, the least common multiple of 4x,13.
130+\frac{169}{12}x=48x
Use the distributive property to multiply 13 by 10+\frac{13}{12}x.
130+\frac{169}{12}x-48x=0
Subtract 48x from both sides.
130-\frac{407}{12}x=0
Combine \frac{169}{12}x and -48x to get -\frac{407}{12}x.
-\frac{407}{12}x=-130
Subtract 130 from both sides. Anything subtracted from zero gives its negation.
x=-130\left(-\frac{12}{407}\right)
Multiply both sides by -\frac{12}{407}, the reciprocal of -\frac{407}{12}.
x=\frac{1560}{407}
Multiply -130 and -\frac{12}{407} to get \frac{1560}{407}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}