Solve for x
x=1.1
Graph
Share
Copied to clipboard
5x-\frac{1.5-x}{0.1}=1.5
Divide 1.5x by 0.3 to get 5x.
5x-\left(\frac{1.5}{0.1}+\frac{-x}{0.1}\right)=1.5
Divide each term of 1.5-x by 0.1 to get \frac{1.5}{0.1}+\frac{-x}{0.1}.
5x-\left(15+\frac{-x}{0.1}\right)=1.5
Expand \frac{1.5}{0.1} by multiplying both numerator and the denominator by 10. Anything divided by one gives itself.
5x-\left(15-10x\right)=1.5
Divide -x by 0.1 to get -10x.
5x-15-\left(-10x\right)=1.5
To find the opposite of 15-10x, find the opposite of each term.
5x-15+10x=1.5
The opposite of -10x is 10x.
15x-15=1.5
Combine 5x and 10x to get 15x.
15x=1.5+15
Add 15 to both sides.
15x=16.5
Add 1.5 and 15 to get 16.5.
x=\frac{16.5}{15}
Divide both sides by 15.
x=\frac{165}{150}
Expand \frac{16.5}{15} by multiplying both numerator and the denominator by 10.
x=\frac{11}{10}
Reduce the fraction \frac{165}{150} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}