Solve for y
y = \frac{9 \sqrt{139} + 153}{5} \approx 51.821687021
y = \frac{153 - 9 \sqrt{139}}{5} \approx 9.378312979
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 1.3 \cdot ( - 36 ) \cdot y } { y - 36 } + 4 y = 54
Share
Copied to clipboard
1.3\left(-36\right)y+4y\left(y-36\right)=54\left(y-36\right)
Variable y cannot be equal to 36 since division by zero is not defined. Multiply both sides of the equation by y-36.
-46.8y+4y\left(y-36\right)=54\left(y-36\right)
Multiply 1.3 and -36 to get -46.8.
-46.8y+4y^{2}-144y=54\left(y-36\right)
Use the distributive property to multiply 4y by y-36.
-190.8y+4y^{2}=54\left(y-36\right)
Combine -46.8y and -144y to get -190.8y.
-190.8y+4y^{2}=54y-1944
Use the distributive property to multiply 54 by y-36.
-190.8y+4y^{2}-54y=-1944
Subtract 54y from both sides.
-244.8y+4y^{2}=-1944
Combine -190.8y and -54y to get -244.8y.
-244.8y+4y^{2}+1944=0
Add 1944 to both sides.
4y^{2}-244.8y+1944=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-244.8\right)±\sqrt{\left(-244.8\right)^{2}-4\times 4\times 1944}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -244.8 for b, and 1944 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-244.8\right)±\sqrt{59927.04-4\times 4\times 1944}}{2\times 4}
Square -244.8 by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-244.8\right)±\sqrt{59927.04-16\times 1944}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-244.8\right)±\sqrt{59927.04-31104}}{2\times 4}
Multiply -16 times 1944.
y=\frac{-\left(-244.8\right)±\sqrt{28823.04}}{2\times 4}
Add 59927.04 to -31104.
y=\frac{-\left(-244.8\right)±\frac{72\sqrt{139}}{5}}{2\times 4}
Take the square root of 28823.04.
y=\frac{244.8±\frac{72\sqrt{139}}{5}}{2\times 4}
The opposite of -244.8 is 244.8.
y=\frac{244.8±\frac{72\sqrt{139}}{5}}{8}
Multiply 2 times 4.
y=\frac{72\sqrt{139}+1224}{5\times 8}
Now solve the equation y=\frac{244.8±\frac{72\sqrt{139}}{5}}{8} when ± is plus. Add 244.8 to \frac{72\sqrt{139}}{5}.
y=\frac{9\sqrt{139}+153}{5}
Divide \frac{1224+72\sqrt{139}}{5} by 8.
y=\frac{1224-72\sqrt{139}}{5\times 8}
Now solve the equation y=\frac{244.8±\frac{72\sqrt{139}}{5}}{8} when ± is minus. Subtract \frac{72\sqrt{139}}{5} from 244.8.
y=\frac{153-9\sqrt{139}}{5}
Divide \frac{1224-72\sqrt{139}}{5} by 8.
y=\frac{9\sqrt{139}+153}{5} y=\frac{153-9\sqrt{139}}{5}
The equation is now solved.
1.3\left(-36\right)y+4y\left(y-36\right)=54\left(y-36\right)
Variable y cannot be equal to 36 since division by zero is not defined. Multiply both sides of the equation by y-36.
-46.8y+4y\left(y-36\right)=54\left(y-36\right)
Multiply 1.3 and -36 to get -46.8.
-46.8y+4y^{2}-144y=54\left(y-36\right)
Use the distributive property to multiply 4y by y-36.
-190.8y+4y^{2}=54\left(y-36\right)
Combine -46.8y and -144y to get -190.8y.
-190.8y+4y^{2}=54y-1944
Use the distributive property to multiply 54 by y-36.
-190.8y+4y^{2}-54y=-1944
Subtract 54y from both sides.
-244.8y+4y^{2}=-1944
Combine -190.8y and -54y to get -244.8y.
4y^{2}-244.8y=-1944
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4y^{2}-244.8y}{4}=-\frac{1944}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{244.8}{4}\right)y=-\frac{1944}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-61.2y=-\frac{1944}{4}
Divide -244.8 by 4.
y^{2}-61.2y=-486
Divide -1944 by 4.
y^{2}-61.2y+\left(-30.6\right)^{2}=-486+\left(-30.6\right)^{2}
Divide -61.2, the coefficient of the x term, by 2 to get -30.6. Then add the square of -30.6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-61.2y+936.36=-486+936.36
Square -30.6 by squaring both the numerator and the denominator of the fraction.
y^{2}-61.2y+936.36=450.36
Add -486 to 936.36.
\left(y-30.6\right)^{2}=450.36
Factor y^{2}-61.2y+936.36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-30.6\right)^{2}}=\sqrt{450.36}
Take the square root of both sides of the equation.
y-30.6=\frac{9\sqrt{139}}{5} y-30.6=-\frac{9\sqrt{139}}{5}
Simplify.
y=\frac{9\sqrt{139}+153}{5} y=\frac{153-9\sqrt{139}}{5}
Add 30.6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}