Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+3\right)\left(1x+2\right)=\left(11x-3\right)\left(x-8\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{3}{11} since division by zero is not defined. Multiply both sides of the equation by \left(11x-3\right)\left(2x+3\right), the least common multiple of 11x-3,2x+3.
2x^{2}+7x+6=\left(11x-3\right)\left(x-8\right)
Use the distributive property to multiply 2x+3 by 1x+2 and combine like terms.
2x^{2}+7x+6=11x^{2}-91x+24
Use the distributive property to multiply 11x-3 by x-8 and combine like terms.
2x^{2}+7x+6-11x^{2}=-91x+24
Subtract 11x^{2} from both sides.
-9x^{2}+7x+6=-91x+24
Combine 2x^{2} and -11x^{2} to get -9x^{2}.
-9x^{2}+7x+6+91x=24
Add 91x to both sides.
-9x^{2}+98x+6=24
Combine 7x and 91x to get 98x.
-9x^{2}+98x+6-24=0
Subtract 24 from both sides.
-9x^{2}+98x-18=0
Subtract 24 from 6 to get -18.
x=\frac{-98±\sqrt{98^{2}-4\left(-9\right)\left(-18\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 98 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-98±\sqrt{9604-4\left(-9\right)\left(-18\right)}}{2\left(-9\right)}
Square 98.
x=\frac{-98±\sqrt{9604+36\left(-18\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-98±\sqrt{9604-648}}{2\left(-9\right)}
Multiply 36 times -18.
x=\frac{-98±\sqrt{8956}}{2\left(-9\right)}
Add 9604 to -648.
x=\frac{-98±2\sqrt{2239}}{2\left(-9\right)}
Take the square root of 8956.
x=\frac{-98±2\sqrt{2239}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{2239}-98}{-18}
Now solve the equation x=\frac{-98±2\sqrt{2239}}{-18} when ± is plus. Add -98 to 2\sqrt{2239}.
x=\frac{49-\sqrt{2239}}{9}
Divide -98+2\sqrt{2239} by -18.
x=\frac{-2\sqrt{2239}-98}{-18}
Now solve the equation x=\frac{-98±2\sqrt{2239}}{-18} when ± is minus. Subtract 2\sqrt{2239} from -98.
x=\frac{\sqrt{2239}+49}{9}
Divide -98-2\sqrt{2239} by -18.
x=\frac{49-\sqrt{2239}}{9} x=\frac{\sqrt{2239}+49}{9}
The equation is now solved.
\left(2x+3\right)\left(1x+2\right)=\left(11x-3\right)\left(x-8\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{3}{11} since division by zero is not defined. Multiply both sides of the equation by \left(11x-3\right)\left(2x+3\right), the least common multiple of 11x-3,2x+3.
2x^{2}+7x+6=\left(11x-3\right)\left(x-8\right)
Use the distributive property to multiply 2x+3 by 1x+2 and combine like terms.
2x^{2}+7x+6=11x^{2}-91x+24
Use the distributive property to multiply 11x-3 by x-8 and combine like terms.
2x^{2}+7x+6-11x^{2}=-91x+24
Subtract 11x^{2} from both sides.
-9x^{2}+7x+6=-91x+24
Combine 2x^{2} and -11x^{2} to get -9x^{2}.
-9x^{2}+7x+6+91x=24
Add 91x to both sides.
-9x^{2}+98x+6=24
Combine 7x and 91x to get 98x.
-9x^{2}+98x=24-6
Subtract 6 from both sides.
-9x^{2}+98x=18
Subtract 6 from 24 to get 18.
\frac{-9x^{2}+98x}{-9}=\frac{18}{-9}
Divide both sides by -9.
x^{2}+\frac{98}{-9}x=\frac{18}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{98}{9}x=\frac{18}{-9}
Divide 98 by -9.
x^{2}-\frac{98}{9}x=-2
Divide 18 by -9.
x^{2}-\frac{98}{9}x+\left(-\frac{49}{9}\right)^{2}=-2+\left(-\frac{49}{9}\right)^{2}
Divide -\frac{98}{9}, the coefficient of the x term, by 2 to get -\frac{49}{9}. Then add the square of -\frac{49}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{98}{9}x+\frac{2401}{81}=-2+\frac{2401}{81}
Square -\frac{49}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{98}{9}x+\frac{2401}{81}=\frac{2239}{81}
Add -2 to \frac{2401}{81}.
\left(x-\frac{49}{9}\right)^{2}=\frac{2239}{81}
Factor x^{2}-\frac{98}{9}x+\frac{2401}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{9}\right)^{2}}=\sqrt{\frac{2239}{81}}
Take the square root of both sides of the equation.
x-\frac{49}{9}=\frac{\sqrt{2239}}{9} x-\frac{49}{9}=-\frac{\sqrt{2239}}{9}
Simplify.
x=\frac{\sqrt{2239}+49}{9} x=\frac{49-\sqrt{2239}}{9}
Add \frac{49}{9} to both sides of the equation.