Solve for x
x=\frac{\sqrt{33}-3}{4}\approx 0.686140662
x=\frac{-\sqrt{33}-3}{4}\approx -2.186140662
Graph
Share
Copied to clipboard
\left(x-1\right)\left(1-x\right)-\left(x+1\right)=-\left(1+x\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of 1+x,1-x^{2},1-x.
2x-x^{2}-1-\left(x+1\right)=-\left(1+x\right)\left(3x-1\right)
Use the distributive property to multiply x-1 by 1-x and combine like terms.
2x-x^{2}-1-x-1=-\left(1+x\right)\left(3x-1\right)
To find the opposite of x+1, find the opposite of each term.
x-x^{2}-1-1=-\left(1+x\right)\left(3x-1\right)
Combine 2x and -x to get x.
x-x^{2}-2=-\left(1+x\right)\left(3x-1\right)
Subtract 1 from -1 to get -2.
x-x^{2}-2=\left(-1-x\right)\left(3x-1\right)
Use the distributive property to multiply -1 by 1+x.
x-x^{2}-2=-2x+1-3x^{2}
Use the distributive property to multiply -1-x by 3x-1 and combine like terms.
x-x^{2}-2+2x=1-3x^{2}
Add 2x to both sides.
3x-x^{2}-2=1-3x^{2}
Combine x and 2x to get 3x.
3x-x^{2}-2-1=-3x^{2}
Subtract 1 from both sides.
3x-x^{2}-3=-3x^{2}
Subtract 1 from -2 to get -3.
3x-x^{2}-3+3x^{2}=0
Add 3x^{2} to both sides.
3x+2x^{2}-3=0
Combine -x^{2} and 3x^{2} to get 2x^{2}.
2x^{2}+3x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-3\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-3\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+24}}{2\times 2}
Multiply -8 times -3.
x=\frac{-3±\sqrt{33}}{2\times 2}
Add 9 to 24.
x=\frac{-3±\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{33}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{33}}{4} when ± is plus. Add -3 to \sqrt{33}.
x=\frac{-\sqrt{33}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{33}}{4} when ± is minus. Subtract \sqrt{33} from -3.
x=\frac{\sqrt{33}-3}{4} x=\frac{-\sqrt{33}-3}{4}
The equation is now solved.
\left(x-1\right)\left(1-x\right)-\left(x+1\right)=-\left(1+x\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of 1+x,1-x^{2},1-x.
2x-x^{2}-1-\left(x+1\right)=-\left(1+x\right)\left(3x-1\right)
Use the distributive property to multiply x-1 by 1-x and combine like terms.
2x-x^{2}-1-x-1=-\left(1+x\right)\left(3x-1\right)
To find the opposite of x+1, find the opposite of each term.
x-x^{2}-1-1=-\left(1+x\right)\left(3x-1\right)
Combine 2x and -x to get x.
x-x^{2}-2=-\left(1+x\right)\left(3x-1\right)
Subtract 1 from -1 to get -2.
x-x^{2}-2=\left(-1-x\right)\left(3x-1\right)
Use the distributive property to multiply -1 by 1+x.
x-x^{2}-2=-2x+1-3x^{2}
Use the distributive property to multiply -1-x by 3x-1 and combine like terms.
x-x^{2}-2+2x=1-3x^{2}
Add 2x to both sides.
3x-x^{2}-2=1-3x^{2}
Combine x and 2x to get 3x.
3x-x^{2}-2+3x^{2}=1
Add 3x^{2} to both sides.
3x+2x^{2}-2=1
Combine -x^{2} and 3x^{2} to get 2x^{2}.
3x+2x^{2}=1+2
Add 2 to both sides.
3x+2x^{2}=3
Add 1 and 2 to get 3.
2x^{2}+3x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+3x}{2}=\frac{3}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{3}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{3}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{33}{16}
Add \frac{3}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{33}}{4} x+\frac{3}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}-3}{4} x=\frac{-\sqrt{33}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}