Solve for t
t=-\frac{1}{2}=-0.5
Share
Copied to clipboard
t\left(t-6\right)\left(1-4t\right)-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Variable t cannot be equal to any of the values 0,1,2,6 since division by zero is not defined. Multiply both sides of the equation by t\left(t-6\right)\left(t-2\right)\left(t-1\right), the least common multiple of t^{2}-3t+2,t^{2}-8t+12,t^{2}-6t.
\left(t^{2}-6t\right)\left(1-4t\right)-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t by t-6.
25t^{2}-4t^{3}-6t-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{2}-6t by 1-4t and combine like terms.
25t^{2}-4t^{3}-6t-\left(t-1\right)^{2}t\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Multiply t-1 and t-1 to get \left(t-1\right)^{2}.
25t^{2}-4t^{3}-6t-\left(t^{2}-2t+1\right)t\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-1\right)^{2}.
25t^{2}-4t^{3}-6t-\left(t^{3}-2t^{2}+t\right)\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{2}-2t+1 by t.
25t^{2}-4t^{3}-6t-\left(3t^{3}-6t^{2}+3t\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{3}-2t^{2}+t by 3.
25t^{2}-4t^{3}-6t-3t^{3}+6t^{2}-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
To find the opposite of 3t^{3}-6t^{2}+3t, find the opposite of each term.
25t^{2}-7t^{3}-6t+6t^{2}-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine -4t^{3} and -3t^{3} to get -7t^{3}.
31t^{2}-7t^{3}-6t-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine 25t^{2} and 6t^{2} to get 31t^{2}.
31t^{2}-7t^{3}-9t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine -6t and -3t to get -9t.
31t^{2}-7t^{3}-9t+\left(t^{2}-3t+2\right)\times 7t=0
Use the distributive property to multiply t-1 by t-2 and combine like terms.
31t^{2}-7t^{3}-9t+\left(7t^{2}-21t+14\right)t=0
Use the distributive property to multiply t^{2}-3t+2 by 7.
31t^{2}-7t^{3}-9t+7t^{3}-21t^{2}+14t=0
Use the distributive property to multiply 7t^{2}-21t+14 by t.
31t^{2}-9t-21t^{2}+14t=0
Combine -7t^{3} and 7t^{3} to get 0.
10t^{2}-9t+14t=0
Combine 31t^{2} and -21t^{2} to get 10t^{2}.
10t^{2}+5t=0
Combine -9t and 14t to get 5t.
t\left(10t+5\right)=0
Factor out t.
t=0 t=-\frac{1}{2}
To find equation solutions, solve t=0 and 10t+5=0.
t=-\frac{1}{2}
Variable t cannot be equal to 0.
t\left(t-6\right)\left(1-4t\right)-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Variable t cannot be equal to any of the values 0,1,2,6 since division by zero is not defined. Multiply both sides of the equation by t\left(t-6\right)\left(t-2\right)\left(t-1\right), the least common multiple of t^{2}-3t+2,t^{2}-8t+12,t^{2}-6t.
\left(t^{2}-6t\right)\left(1-4t\right)-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t by t-6.
25t^{2}-4t^{3}-6t-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{2}-6t by 1-4t and combine like terms.
25t^{2}-4t^{3}-6t-\left(t-1\right)^{2}t\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Multiply t-1 and t-1 to get \left(t-1\right)^{2}.
25t^{2}-4t^{3}-6t-\left(t^{2}-2t+1\right)t\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-1\right)^{2}.
25t^{2}-4t^{3}-6t-\left(t^{3}-2t^{2}+t\right)\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{2}-2t+1 by t.
25t^{2}-4t^{3}-6t-\left(3t^{3}-6t^{2}+3t\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{3}-2t^{2}+t by 3.
25t^{2}-4t^{3}-6t-3t^{3}+6t^{2}-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
To find the opposite of 3t^{3}-6t^{2}+3t, find the opposite of each term.
25t^{2}-7t^{3}-6t+6t^{2}-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine -4t^{3} and -3t^{3} to get -7t^{3}.
31t^{2}-7t^{3}-6t-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine 25t^{2} and 6t^{2} to get 31t^{2}.
31t^{2}-7t^{3}-9t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine -6t and -3t to get -9t.
31t^{2}-7t^{3}-9t+\left(t^{2}-3t+2\right)\times 7t=0
Use the distributive property to multiply t-1 by t-2 and combine like terms.
31t^{2}-7t^{3}-9t+\left(7t^{2}-21t+14\right)t=0
Use the distributive property to multiply t^{2}-3t+2 by 7.
31t^{2}-7t^{3}-9t+7t^{3}-21t^{2}+14t=0
Use the distributive property to multiply 7t^{2}-21t+14 by t.
31t^{2}-9t-21t^{2}+14t=0
Combine -7t^{3} and 7t^{3} to get 0.
10t^{2}-9t+14t=0
Combine 31t^{2} and -21t^{2} to get 10t^{2}.
10t^{2}+5t=0
Combine -9t and 14t to get 5t.
t=\frac{-5±\sqrt{5^{2}}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±5}{2\times 10}
Take the square root of 5^{2}.
t=\frac{-5±5}{20}
Multiply 2 times 10.
t=\frac{0}{20}
Now solve the equation t=\frac{-5±5}{20} when ± is plus. Add -5 to 5.
t=0
Divide 0 by 20.
t=-\frac{10}{20}
Now solve the equation t=\frac{-5±5}{20} when ± is minus. Subtract 5 from -5.
t=-\frac{1}{2}
Reduce the fraction \frac{-10}{20} to lowest terms by extracting and canceling out 10.
t=0 t=-\frac{1}{2}
The equation is now solved.
t=-\frac{1}{2}
Variable t cannot be equal to 0.
t\left(t-6\right)\left(1-4t\right)-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Variable t cannot be equal to any of the values 0,1,2,6 since division by zero is not defined. Multiply both sides of the equation by t\left(t-6\right)\left(t-2\right)\left(t-1\right), the least common multiple of t^{2}-3t+2,t^{2}-8t+12,t^{2}-6t.
\left(t^{2}-6t\right)\left(1-4t\right)-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t by t-6.
25t^{2}-4t^{3}-6t-\left(t-1\right)t\times 3\left(t-1\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{2}-6t by 1-4t and combine like terms.
25t^{2}-4t^{3}-6t-\left(t-1\right)^{2}t\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Multiply t-1 and t-1 to get \left(t-1\right)^{2}.
25t^{2}-4t^{3}-6t-\left(t^{2}-2t+1\right)t\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-1\right)^{2}.
25t^{2}-4t^{3}-6t-\left(t^{3}-2t^{2}+t\right)\times 3+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{2}-2t+1 by t.
25t^{2}-4t^{3}-6t-\left(3t^{3}-6t^{2}+3t\right)+\left(t-1\right)\left(t-2\right)\times 7t=0
Use the distributive property to multiply t^{3}-2t^{2}+t by 3.
25t^{2}-4t^{3}-6t-3t^{3}+6t^{2}-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
To find the opposite of 3t^{3}-6t^{2}+3t, find the opposite of each term.
25t^{2}-7t^{3}-6t+6t^{2}-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine -4t^{3} and -3t^{3} to get -7t^{3}.
31t^{2}-7t^{3}-6t-3t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine 25t^{2} and 6t^{2} to get 31t^{2}.
31t^{2}-7t^{3}-9t+\left(t-1\right)\left(t-2\right)\times 7t=0
Combine -6t and -3t to get -9t.
31t^{2}-7t^{3}-9t+\left(t^{2}-3t+2\right)\times 7t=0
Use the distributive property to multiply t-1 by t-2 and combine like terms.
31t^{2}-7t^{3}-9t+\left(7t^{2}-21t+14\right)t=0
Use the distributive property to multiply t^{2}-3t+2 by 7.
31t^{2}-7t^{3}-9t+7t^{3}-21t^{2}+14t=0
Use the distributive property to multiply 7t^{2}-21t+14 by t.
31t^{2}-9t-21t^{2}+14t=0
Combine -7t^{3} and 7t^{3} to get 0.
10t^{2}-9t+14t=0
Combine 31t^{2} and -21t^{2} to get 10t^{2}.
10t^{2}+5t=0
Combine -9t and 14t to get 5t.
\frac{10t^{2}+5t}{10}=\frac{0}{10}
Divide both sides by 10.
t^{2}+\frac{5}{10}t=\frac{0}{10}
Dividing by 10 undoes the multiplication by 10.
t^{2}+\frac{1}{2}t=\frac{0}{10}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
t^{2}+\frac{1}{2}t=0
Divide 0 by 10.
t^{2}+\frac{1}{2}t+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{1}{2}t+\frac{1}{16}=\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(t+\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor t^{2}+\frac{1}{2}t+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
t+\frac{1}{4}=\frac{1}{4} t+\frac{1}{4}=-\frac{1}{4}
Simplify.
t=0 t=-\frac{1}{2}
Subtract \frac{1}{4} from both sides of the equation.
t=-\frac{1}{2}
Variable t cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}