Evaluate
-\frac{43}{169}-\frac{32}{169}i\approx -0.25443787-0.189349112i
Real Part
-\frac{43}{169} = -0.25443786982248523
Share
Copied to clipboard
\frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-12i.
\frac{\left(1-4i\right)\left(5-12i\right)}{5^{2}-12^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-4i\right)\left(5-12i\right)}{169}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)i^{2}}{169}
Multiply complex numbers 1-4i and 5-12i like you multiply binomials.
\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right)}{169}
By definition, i^{2} is -1.
\frac{5-12i-20i-48}{169}
Do the multiplications in 1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right).
\frac{5-48+\left(-12-20\right)i}{169}
Combine the real and imaginary parts in 5-12i-20i-48.
\frac{-43-32i}{169}
Do the additions in 5-48+\left(-12-20\right)i.
-\frac{43}{169}-\frac{32}{169}i
Divide -43-32i by 169 to get -\frac{43}{169}-\frac{32}{169}i.
Re(\frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)})
Multiply both numerator and denominator of \frac{1-4i}{5+12i} by the complex conjugate of the denominator, 5-12i.
Re(\frac{\left(1-4i\right)\left(5-12i\right)}{5^{2}-12^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-4i\right)\left(5-12i\right)}{169})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)i^{2}}{169})
Multiply complex numbers 1-4i and 5-12i like you multiply binomials.
Re(\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right)}{169})
By definition, i^{2} is -1.
Re(\frac{5-12i-20i-48}{169})
Do the multiplications in 1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right).
Re(\frac{5-48+\left(-12-20\right)i}{169})
Combine the real and imaginary parts in 5-12i-20i-48.
Re(\frac{-43-32i}{169})
Do the additions in 5-48+\left(-12-20\right)i.
Re(-\frac{43}{169}-\frac{32}{169}i)
Divide -43-32i by 169 to get -\frac{43}{169}-\frac{32}{169}i.
-\frac{43}{169}
The real part of -\frac{43}{169}-\frac{32}{169}i is -\frac{43}{169}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}