Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-12i.
\frac{\left(1-4i\right)\left(5-12i\right)}{5^{2}-12^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-4i\right)\left(5-12i\right)}{169}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)i^{2}}{169}
Multiply complex numbers 1-4i and 5-12i like you multiply binomials.
\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right)}{169}
By definition, i^{2} is -1.
\frac{5-12i-20i-48}{169}
Do the multiplications in 1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right).
\frac{5-48+\left(-12-20\right)i}{169}
Combine the real and imaginary parts in 5-12i-20i-48.
\frac{-43-32i}{169}
Do the additions in 5-48+\left(-12-20\right)i.
-\frac{43}{169}-\frac{32}{169}i
Divide -43-32i by 169 to get -\frac{43}{169}-\frac{32}{169}i.
Re(\frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)})
Multiply both numerator and denominator of \frac{1-4i}{5+12i} by the complex conjugate of the denominator, 5-12i.
Re(\frac{\left(1-4i\right)\left(5-12i\right)}{5^{2}-12^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-4i\right)\left(5-12i\right)}{169})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)i^{2}}{169})
Multiply complex numbers 1-4i and 5-12i like you multiply binomials.
Re(\frac{1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right)}{169})
By definition, i^{2} is -1.
Re(\frac{5-12i-20i-48}{169})
Do the multiplications in 1\times 5+1\times \left(-12i\right)-4i\times 5-4\left(-12\right)\left(-1\right).
Re(\frac{5-48+\left(-12-20\right)i}{169})
Combine the real and imaginary parts in 5-12i-20i-48.
Re(\frac{-43-32i}{169})
Do the additions in 5-48+\left(-12-20\right)i.
Re(-\frac{43}{169}-\frac{32}{169}i)
Divide -43-32i by 169 to get -\frac{43}{169}-\frac{32}{169}i.
-\frac{43}{169}
The real part of -\frac{43}{169}-\frac{32}{169}i is -\frac{43}{169}.