Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2-4\sqrt{5}}{3-\sqrt{5}-\sqrt{5}+2}
Subtract 3 from 1 to get -2.
\frac{-2-4\sqrt{5}}{3-2\sqrt{5}+2}
Combine -\sqrt{5} and -\sqrt{5} to get -2\sqrt{5}.
\frac{-2-4\sqrt{5}}{5-2\sqrt{5}}
Add 3 and 2 to get 5.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{\left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right)}
Rationalize the denominator of \frac{-2-4\sqrt{5}}{5-2\sqrt{5}} by multiplying numerator and denominator by 5+2\sqrt{5}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{5^{2}-\left(-2\sqrt{5}\right)^{2}}
Consider \left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-\left(-2\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-2\sqrt{5}\right)^{2}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-4\left(\sqrt{5}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-4\times 5}
The square of \sqrt{5} is 5.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-20}
Multiply 4 and 5 to get 20.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{5}
Subtract 20 from 25 to get 5.
\frac{-10-4\sqrt{5}-20\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{5}
Apply the distributive property by multiplying each term of -2-4\sqrt{5} by each term of 5+2\sqrt{5}.
\frac{-10-24\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{5}
Combine -4\sqrt{5} and -20\sqrt{5} to get -24\sqrt{5}.
\frac{-10-24\sqrt{5}-8\times 5}{5}
The square of \sqrt{5} is 5.
\frac{-10-24\sqrt{5}-40}{5}
Multiply -8 and 5 to get -40.
\frac{-50-24\sqrt{5}}{5}
Subtract 40 from -10 to get -50.