Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-3i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{\left(1-3i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-3i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+i-3i-3i^{2}}{2}
Multiply complex numbers 1-3i and 1+i like you multiply binomials.
\frac{1\times 1+i-3i-3\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{1+i-3i+3}{2}
Do the multiplications in 1\times 1+i-3i-3\left(-1\right).
\frac{1+3+\left(1-3\right)i}{2}
Combine the real and imaginary parts in 1+i-3i+3.
\frac{4-2i}{2}
Do the additions in 1+3+\left(1-3\right)i.
2-i
Divide 4-2i by 2 to get 2-i.
Re(\frac{\left(1-3i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{1-3i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{\left(1-3i\right)\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-3i\right)\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 1+i-3i-3i^{2}}{2})
Multiply complex numbers 1-3i and 1+i like you multiply binomials.
Re(\frac{1\times 1+i-3i-3\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{1+i-3i+3}{2})
Do the multiplications in 1\times 1+i-3i-3\left(-1\right).
Re(\frac{1+3+\left(1-3\right)i}{2})
Combine the real and imaginary parts in 1+i-3i+3.
Re(\frac{4-2i}{2})
Do the additions in 1+3+\left(1-3\right)i.
Re(2-i)
Divide 4-2i by 2 to get 2-i.
2
The real part of 2-i is 2.