Solve for a
a=-1
a=4
Share
Copied to clipboard
1-3=\left(-\frac{1}{3}a+\frac{2}{3}\right)\left(a-1\right)
Variable a cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by -a+2.
-2=\left(-\frac{1}{3}a+\frac{2}{3}\right)\left(a-1\right)
Subtract 3 from 1 to get -2.
-2=-\frac{1}{3}a^{2}+a-\frac{2}{3}
Use the distributive property to multiply -\frac{1}{3}a+\frac{2}{3} by a-1 and combine like terms.
-\frac{1}{3}a^{2}+a-\frac{2}{3}=-2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}a^{2}+a-\frac{2}{3}+2=0
Add 2 to both sides.
-\frac{1}{3}a^{2}+a+\frac{4}{3}=0
Add -\frac{2}{3} and 2 to get \frac{4}{3}.
a=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{3}\right)\times \frac{4}{3}}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, 1 for b, and \frac{4}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\left(-\frac{1}{3}\right)\times \frac{4}{3}}}{2\left(-\frac{1}{3}\right)}
Square 1.
a=\frac{-1±\sqrt{1+\frac{4}{3}\times \frac{4}{3}}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
a=\frac{-1±\sqrt{1+\frac{16}{9}}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{-1±\sqrt{\frac{25}{9}}}{2\left(-\frac{1}{3}\right)}
Add 1 to \frac{16}{9}.
a=\frac{-1±\frac{5}{3}}{2\left(-\frac{1}{3}\right)}
Take the square root of \frac{25}{9}.
a=\frac{-1±\frac{5}{3}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
a=\frac{\frac{2}{3}}{-\frac{2}{3}}
Now solve the equation a=\frac{-1±\frac{5}{3}}{-\frac{2}{3}} when ± is plus. Add -1 to \frac{5}{3}.
a=-1
Divide \frac{2}{3} by -\frac{2}{3} by multiplying \frac{2}{3} by the reciprocal of -\frac{2}{3}.
a=-\frac{\frac{8}{3}}{-\frac{2}{3}}
Now solve the equation a=\frac{-1±\frac{5}{3}}{-\frac{2}{3}} when ± is minus. Subtract \frac{5}{3} from -1.
a=4
Divide -\frac{8}{3} by -\frac{2}{3} by multiplying -\frac{8}{3} by the reciprocal of -\frac{2}{3}.
a=-1 a=4
The equation is now solved.
1-3=\left(-\frac{1}{3}a+\frac{2}{3}\right)\left(a-1\right)
Variable a cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by -a+2.
-2=\left(-\frac{1}{3}a+\frac{2}{3}\right)\left(a-1\right)
Subtract 3 from 1 to get -2.
-2=-\frac{1}{3}a^{2}+a-\frac{2}{3}
Use the distributive property to multiply -\frac{1}{3}a+\frac{2}{3} by a-1 and combine like terms.
-\frac{1}{3}a^{2}+a-\frac{2}{3}=-2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}a^{2}+a=-2+\frac{2}{3}
Add \frac{2}{3} to both sides.
-\frac{1}{3}a^{2}+a=-\frac{4}{3}
Add -2 and \frac{2}{3} to get -\frac{4}{3}.
\frac{-\frac{1}{3}a^{2}+a}{-\frac{1}{3}}=-\frac{\frac{4}{3}}{-\frac{1}{3}}
Multiply both sides by -3.
a^{2}+\frac{1}{-\frac{1}{3}}a=-\frac{\frac{4}{3}}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
a^{2}-3a=-\frac{\frac{4}{3}}{-\frac{1}{3}}
Divide 1 by -\frac{1}{3} by multiplying 1 by the reciprocal of -\frac{1}{3}.
a^{2}-3a=4
Divide -\frac{4}{3} by -\frac{1}{3} by multiplying -\frac{4}{3} by the reciprocal of -\frac{1}{3}.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-3a+\frac{9}{4}=4+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-3a+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(a-\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor a^{2}-3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
a-\frac{3}{2}=\frac{5}{2} a-\frac{3}{2}=-\frac{5}{2}
Simplify.
a=4 a=-1
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}