Evaluate
\frac{y^{3}-3y+1}{y\left(y-1\right)}
Expand
\frac{y^{3}-3y+1}{y\left(y-1\right)}
Graph
Share
Copied to clipboard
\frac{1-3\times \frac{1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{1-\frac{3\times 1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Express 3\times \frac{1^{2}}{y^{2}} as a single fraction.
\frac{1-\frac{3\times 1}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Calculate 1 to the power of 2 and get 1.
\frac{1-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Multiply 3 and 1 to get 3.
\frac{\frac{y^{2}}{y^{2}}-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{2}-3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{y^{2}}{y^{2}} and \frac{3}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-3}{y^{2}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}-3\right)y}{y^{3}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y^{3} is y^{3}. Multiply \frac{y^{2}-3}{y^{2}} times \frac{y}{y}.
\frac{\frac{\left(y^{2}-3\right)y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{\left(y^{2}-3\right)y}{y^{3}} and \frac{1^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}-3y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Do the multiplications in \left(y^{2}-3\right)y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Combine like terms in y^{3}-3y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(\frac{y}{y}-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\times \frac{y-1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{y-1}{yy}}
Multiply \frac{1}{y} times \frac{y-1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y^{3}-3y+1\right)yy}{y^{3}\left(y-1\right)}
Divide \frac{y^{3}-3y+1}{y^{3}} by \frac{y-1}{yy} by multiplying \frac{y^{3}-3y+1}{y^{3}} by the reciprocal of \frac{y-1}{yy}.
\frac{y^{3}-3y+1}{y\left(y-1\right)}
Cancel out yy in both numerator and denominator.
\frac{y^{3}-3y+1}{y^{2}-y}
Use the distributive property to multiply y by y-1.
\frac{1-3\times \frac{1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{1-\frac{3\times 1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Express 3\times \frac{1^{2}}{y^{2}} as a single fraction.
\frac{1-\frac{3\times 1}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Calculate 1 to the power of 2 and get 1.
\frac{1-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Multiply 3 and 1 to get 3.
\frac{\frac{y^{2}}{y^{2}}-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{2}-3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{y^{2}}{y^{2}} and \frac{3}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-3}{y^{2}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}-3\right)y}{y^{3}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y^{3} is y^{3}. Multiply \frac{y^{2}-3}{y^{2}} times \frac{y}{y}.
\frac{\frac{\left(y^{2}-3\right)y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{\left(y^{2}-3\right)y}{y^{3}} and \frac{1^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}-3y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Do the multiplications in \left(y^{2}-3\right)y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Combine like terms in y^{3}-3y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(\frac{y}{y}-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\times \frac{y-1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{y-1}{yy}}
Multiply \frac{1}{y} times \frac{y-1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y^{3}-3y+1\right)yy}{y^{3}\left(y-1\right)}
Divide \frac{y^{3}-3y+1}{y^{3}} by \frac{y-1}{yy} by multiplying \frac{y^{3}-3y+1}{y^{3}} by the reciprocal of \frac{y-1}{yy}.
\frac{y^{3}-3y+1}{y\left(y-1\right)}
Cancel out yy in both numerator and denominator.
\frac{y^{3}-3y+1}{y^{2}-y}
Use the distributive property to multiply y by y-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}