Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1-3\times \frac{1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{1-\frac{3\times 1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Express 3\times \frac{1^{2}}{y^{2}} as a single fraction.
\frac{1-\frac{3\times 1}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Calculate 1 to the power of 2 and get 1.
\frac{1-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Multiply 3 and 1 to get 3.
\frac{\frac{y^{2}}{y^{2}}-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{2}-3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{y^{2}}{y^{2}} and \frac{3}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-3}{y^{2}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}-3\right)y}{y^{3}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y^{3} is y^{3}. Multiply \frac{y^{2}-3}{y^{2}} times \frac{y}{y}.
\frac{\frac{\left(y^{2}-3\right)y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{\left(y^{2}-3\right)y}{y^{3}} and \frac{1^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}-3y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Do the multiplications in \left(y^{2}-3\right)y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Combine like terms in y^{3}-3y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(\frac{y}{y}-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\times \frac{y-1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{y-1}{yy}}
Multiply \frac{1}{y} times \frac{y-1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y^{3}-3y+1\right)yy}{y^{3}\left(y-1\right)}
Divide \frac{y^{3}-3y+1}{y^{3}} by \frac{y-1}{yy} by multiplying \frac{y^{3}-3y+1}{y^{3}} by the reciprocal of \frac{y-1}{yy}.
\frac{y^{3}-3y+1}{y\left(y-1\right)}
Cancel out yy in both numerator and denominator.
\frac{y^{3}-3y+1}{y^{2}-y}
Use the distributive property to multiply y by y-1.
\frac{1-3\times \frac{1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{1-\frac{3\times 1^{2}}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Express 3\times \frac{1^{2}}{y^{2}} as a single fraction.
\frac{1-\frac{3\times 1}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Calculate 1 to the power of 2 and get 1.
\frac{1-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Multiply 3 and 1 to get 3.
\frac{\frac{y^{2}}{y^{2}}-\frac{3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{2}-3}{y^{2}}+\left(\frac{1}{y}\right)^{3}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{y^{2}}{y^{2}} and \frac{3}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-3}{y^{2}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To raise \frac{1}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(y^{2}-3\right)y}{y^{3}}+\frac{1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y^{3} is y^{3}. Multiply \frac{y^{2}-3}{y^{2}} times \frac{y}{y}.
\frac{\frac{\left(y^{2}-3\right)y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Since \frac{\left(y^{2}-3\right)y}{y^{3}} and \frac{1^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}-3y+1^{3}}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Do the multiplications in \left(y^{2}-3\right)y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(1-\frac{1}{y}\right)}
Combine like terms in y^{3}-3y+1^{3}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\left(\frac{y}{y}-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{1}{y}\times \frac{y-1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{3}-3y+1}{y^{3}}}{\frac{y-1}{yy}}
Multiply \frac{1}{y} times \frac{y-1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y^{3}-3y+1\right)yy}{y^{3}\left(y-1\right)}
Divide \frac{y^{3}-3y+1}{y^{3}} by \frac{y-1}{yy} by multiplying \frac{y^{3}-3y+1}{y^{3}} by the reciprocal of \frac{y-1}{yy}.
\frac{y^{3}-3y+1}{y\left(y-1\right)}
Cancel out yy in both numerator and denominator.
\frac{y^{3}-3y+1}{y^{2}-y}
Use the distributive property to multiply y by y-1.