Evaluate
\frac{53y}{16\left(y-1\right)}
Expand
\frac{53y}{16\left(y-1\right)}
Graph
Share
Copied to clipboard
\frac{1-3\times \frac{1}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1-\frac{3}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Multiply 3 and \frac{1}{16} to get \frac{3}{16}.
\frac{\frac{16}{16}-\frac{3}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Convert 1 to fraction \frac{16}{16}.
\frac{\frac{16-3}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Since \frac{16}{16} and \frac{3}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{13}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Subtract 3 from 16 to get 13.
\frac{\frac{13}{16}+\frac{1}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Calculate \frac{1}{4} to the power of 3 and get \frac{1}{64}.
\frac{\frac{52}{64}+\frac{1}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Least common multiple of 16 and 64 is 64. Convert \frac{13}{16} and \frac{1}{64} to fractions with denominator 64.
\frac{\frac{52+1}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Since \frac{52}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
\frac{\frac{53}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Add 52 and 1 to get 53.
\frac{\frac{53}{64}}{\frac{1}{4}\left(\frac{y}{y}-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{53}{64}}{\frac{1}{4}\times \frac{y-1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{53}{64}}{\frac{y-1}{4y}}
Multiply \frac{1}{4} times \frac{y-1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{53\times 4y}{64\left(y-1\right)}
Divide \frac{53}{64} by \frac{y-1}{4y} by multiplying \frac{53}{64} by the reciprocal of \frac{y-1}{4y}.
\frac{53y}{16\left(y-1\right)}
Cancel out 4 in both numerator and denominator.
\frac{53y}{16y-16}
Use the distributive property to multiply 16 by y-1.
\frac{1-3\times \frac{1}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1-\frac{3}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Multiply 3 and \frac{1}{16} to get \frac{3}{16}.
\frac{\frac{16}{16}-\frac{3}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Convert 1 to fraction \frac{16}{16}.
\frac{\frac{16-3}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Since \frac{16}{16} and \frac{3}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{13}{16}+\left(\frac{1}{4}\right)^{3}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Subtract 3 from 16 to get 13.
\frac{\frac{13}{16}+\frac{1}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Calculate \frac{1}{4} to the power of 3 and get \frac{1}{64}.
\frac{\frac{52}{64}+\frac{1}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Least common multiple of 16 and 64 is 64. Convert \frac{13}{16} and \frac{1}{64} to fractions with denominator 64.
\frac{\frac{52+1}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Since \frac{52}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
\frac{\frac{53}{64}}{\frac{1}{4}\left(1-\frac{1}{y}\right)}
Add 52 and 1 to get 53.
\frac{\frac{53}{64}}{\frac{1}{4}\left(\frac{y}{y}-\frac{1}{y}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{53}{64}}{\frac{1}{4}\times \frac{y-1}{y}}
Since \frac{y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{53}{64}}{\frac{y-1}{4y}}
Multiply \frac{1}{4} times \frac{y-1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{53\times 4y}{64\left(y-1\right)}
Divide \frac{53}{64} by \frac{y-1}{4y} by multiplying \frac{53}{64} by the reciprocal of \frac{y-1}{4y}.
\frac{53y}{16\left(y-1\right)}
Cancel out 4 in both numerator and denominator.
\frac{53y}{16y-16}
Use the distributive property to multiply 16 by y-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}