Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{3-i}{3i}
Multiply both numerator and denominator of \frac{1-2i}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{4-3i}{5}+\frac{3-i}{3i}
Do the multiplications in \frac{\left(1-2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
\frac{4}{5}-\frac{3}{5}i+\frac{3-i}{3i}
Divide 4-3i by 5 to get \frac{4}{5}-\frac{3}{5}i.
\frac{4}{5}-\frac{3}{5}i+\frac{1+3i}{-3}
Multiply both numerator and denominator of \frac{3-i}{3i} by imaginary unit i.
\frac{4}{5}-\frac{3}{5}i+\left(-\frac{1}{3}-i\right)
Divide 1+3i by -3 to get -\frac{1}{3}-i.
\frac{7}{15}-\frac{8}{5}i
Add \frac{4}{5}-\frac{3}{5}i and -\frac{1}{3}-i to get \frac{7}{15}-\frac{8}{5}i.
Re(\frac{\left(1-2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{3-i}{3i})
Multiply both numerator and denominator of \frac{1-2i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{4-3i}{5}+\frac{3-i}{3i})
Do the multiplications in \frac{\left(1-2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(\frac{4}{5}-\frac{3}{5}i+\frac{3-i}{3i})
Divide 4-3i by 5 to get \frac{4}{5}-\frac{3}{5}i.
Re(\frac{4}{5}-\frac{3}{5}i+\frac{1+3i}{-3})
Multiply both numerator and denominator of \frac{3-i}{3i} by imaginary unit i.
Re(\frac{4}{5}-\frac{3}{5}i+\left(-\frac{1}{3}-i\right))
Divide 1+3i by -3 to get -\frac{1}{3}-i.
Re(\frac{7}{15}-\frac{8}{5}i)
Add \frac{4}{5}-\frac{3}{5}i and -\frac{1}{3}-i to get \frac{7}{15}-\frac{8}{5}i.
\frac{7}{15}
The real part of \frac{7}{15}-\frac{8}{5}i is \frac{7}{15}.