Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-2i}{-3+4i}
Calculate 1+2i to the power of 2 and get -3+4i.
\frac{\left(1-2i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3-4i.
\frac{-11+2i}{25}
Do the multiplications in \frac{\left(1-2i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}.
-\frac{11}{25}+\frac{2}{25}i
Divide -11+2i by 25 to get -\frac{11}{25}+\frac{2}{25}i.
Re(\frac{1-2i}{-3+4i})
Calculate 1+2i to the power of 2 and get -3+4i.
Re(\frac{\left(1-2i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)})
Multiply both numerator and denominator of \frac{1-2i}{-3+4i} by the complex conjugate of the denominator, -3-4i.
Re(\frac{-11+2i}{25})
Do the multiplications in \frac{\left(1-2i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}.
Re(-\frac{11}{25}+\frac{2}{25}i)
Divide -11+2i by 25 to get -\frac{11}{25}+\frac{2}{25}i.
-\frac{11}{25}
The real part of -\frac{11}{25}+\frac{2}{25}i is -\frac{11}{25}.