Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{0}{\cos(\frac{\pi }{3})+1\sin(\frac{\pi }{3})}
Subtract 1 from 1 to get 0.
\frac{0}{\frac{1}{2}+1\sin(\frac{\pi }{3})}
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
\frac{0}{\frac{1}{2}+1\times \frac{\sqrt{3}}{2}}
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
\frac{0}{\frac{1}{2}+\frac{\sqrt{3}}{2}}
Express 1\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{0}{\frac{1+\sqrt{3}}{2}}
Since \frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{0\times 2}{1+\sqrt{3}}
Divide 0 by \frac{1+\sqrt{3}}{2} by multiplying 0 by the reciprocal of \frac{1+\sqrt{3}}{2}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}
Rationalize the denominator of \frac{0\times 2}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{0\left(1-\sqrt{3}\right)}{-2}
Multiply 0 and 2 to get 0.
\frac{0}{-2}
Anything times zero gives zero.
0
Zero divided by any non-zero number gives zero.