Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{0}{\cos(\frac{\pi }{3})+1\sin(\frac{\pi }{3})}
Subtract 1 from 1 to get 0.
\frac{0}{\frac{1}{2}+1\sin(\frac{\pi }{3})}
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
\frac{0}{\frac{1}{2}+1\times \frac{\sqrt{3}}{2}}
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
\frac{0}{\frac{1}{2}+\frac{\sqrt{3}}{2}}
Express 1\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{0}{\frac{1+\sqrt{3}}{2}}
Since \frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{0\times 2}{1+\sqrt{3}}
Divide 0 by \frac{1+\sqrt{3}}{2} by multiplying 0 by the reciprocal of \frac{1+\sqrt{3}}{2}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}
Rationalize the denominator of \frac{0\times 2}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{0\times 2\left(1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{0\left(1-\sqrt{3}\right)}{-2}
Multiply 0 and 2 to get 0.
\frac{0}{-2}
Anything times zero gives zero.
0
Zero divided by any non-zero number gives zero.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}