Evaluate
\frac{281}{154}\approx 1.824675325
Factor
\frac{281}{2 \cdot 7 \cdot 11} = 1\frac{127}{154} = 1.8246753246753247
Share
Copied to clipboard
\frac{1-\frac{141}{-140}}{1.1}
Subtract 141 from 1 to get -140.
\frac{1-\left(-\frac{141}{140}\right)}{1.1}
Fraction \frac{141}{-140} can be rewritten as -\frac{141}{140} by extracting the negative sign.
\frac{1+\frac{141}{140}}{1.1}
The opposite of -\frac{141}{140} is \frac{141}{140}.
\frac{\frac{140}{140}+\frac{141}{140}}{1.1}
Convert 1 to fraction \frac{140}{140}.
\frac{\frac{140+141}{140}}{1.1}
Since \frac{140}{140} and \frac{141}{140} have the same denominator, add them by adding their numerators.
\frac{\frac{281}{140}}{1.1}
Add 140 and 141 to get 281.
\frac{281}{140\times 1.1}
Express \frac{\frac{281}{140}}{1.1} as a single fraction.
\frac{281}{154}
Multiply 140 and 1.1 to get 154.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}