Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-\sqrt{3}}{1+\sqrt{3}}\times 1
Divide 1 by 1 to get 1.
\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{1-\sqrt{3}}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}\times 1
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\times 1
Square 1. Square \sqrt{3}.
\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}\times 1
Subtract 3 from 1 to get -2.
\frac{\left(1-\sqrt{3}\right)^{2}}{-2}\times 1
Multiply 1-\sqrt{3} and 1-\sqrt{3} to get \left(1-\sqrt{3}\right)^{2}.
\frac{1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}\times 1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{1-2\sqrt{3}+3}{-2}\times 1
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{-2}\times 1
Add 1 and 3 to get 4.
\left(-2+\sqrt{3}\right)\times 1
Divide each term of 4-2\sqrt{3} by -2 to get -2+\sqrt{3}.
-2+\sqrt{3}
Use the distributive property to multiply -2+\sqrt{3} by 1.