Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{x-y}-\frac{x-y-1}{\left(x-y\right)^{2}}
Factor x^{2}-2xy+y^{2}.
\frac{\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}}-\frac{\left(x-y-1\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and \left(x-y\right)^{2} is \left(x-y\right)\left(x-y\right)^{2}. Multiply \frac{1}{x-y} times \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}. Multiply \frac{x-y-1}{\left(x-y\right)^{2}} times \frac{x-y}{x-y}.
\frac{\left(x-y\right)^{2}-\left(x-y-1\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}
Since \frac{\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}} and \frac{\left(x-y-1\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2xy+y^{2}-x^{2}+xy+xy-y^{2}+x-y}{\left(x-y\right)\left(x-y\right)^{2}}
Do the multiplications in \left(x-y\right)^{2}-\left(x-y-1\right)\left(x-y\right).
\frac{x-y}{\left(x-y\right)\left(x-y\right)^{2}}
Combine like terms in x^{2}-2xy+y^{2}-x^{2}+xy+xy-y^{2}+x-y.
\frac{1}{\left(x-y\right)^{2}}
Cancel out x-y in both numerator and denominator.
\frac{1}{x^{2}-2xy+y^{2}}
Expand \left(x-y\right)^{2}.
\frac{1}{x-y}-\frac{x-y-1}{\left(x-y\right)^{2}}
Factor x^{2}-2xy+y^{2}.
\frac{\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}}-\frac{\left(x-y-1\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and \left(x-y\right)^{2} is \left(x-y\right)\left(x-y\right)^{2}. Multiply \frac{1}{x-y} times \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}. Multiply \frac{x-y-1}{\left(x-y\right)^{2}} times \frac{x-y}{x-y}.
\frac{\left(x-y\right)^{2}-\left(x-y-1\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}
Since \frac{\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}} and \frac{\left(x-y-1\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2xy+y^{2}-x^{2}+xy+xy-y^{2}+x-y}{\left(x-y\right)\left(x-y\right)^{2}}
Do the multiplications in \left(x-y\right)^{2}-\left(x-y-1\right)\left(x-y\right).
\frac{x-y}{\left(x-y\right)\left(x-y\right)^{2}}
Combine like terms in x^{2}-2xy+y^{2}-x^{2}+xy+xy-y^{2}+x-y.
\frac{1}{\left(x-y\right)^{2}}
Cancel out x-y in both numerator and denominator.
\frac{1}{x^{2}-2xy+y^{2}}
Expand \left(x-y\right)^{2}.