Solve for x
x=\frac{6}{7}\approx 0.857142857
Graph
Share
Copied to clipboard
x+3-\left(x-6\right)\times 3=\left(x+3\right)\times 5
Variable x cannot be equal to any of the values -3,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+3\right), the least common multiple of x-6,x+3.
x+3-\left(3x-18\right)=\left(x+3\right)\times 5
Use the distributive property to multiply x-6 by 3.
x+3-3x+18=\left(x+3\right)\times 5
To find the opposite of 3x-18, find the opposite of each term.
-2x+3+18=\left(x+3\right)\times 5
Combine x and -3x to get -2x.
-2x+21=\left(x+3\right)\times 5
Add 3 and 18 to get 21.
-2x+21=5x+15
Use the distributive property to multiply x+3 by 5.
-2x+21-5x=15
Subtract 5x from both sides.
-7x+21=15
Combine -2x and -5x to get -7x.
-7x=15-21
Subtract 21 from both sides.
-7x=-6
Subtract 21 from 15 to get -6.
x=\frac{-6}{-7}
Divide both sides by -7.
x=\frac{6}{7}
Fraction \frac{-6}{-7} can be simplified to \frac{6}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}