Solve for x
x=8
x = \frac{16}{5} = 3\frac{1}{5} = 3.2
Graph
Share
Copied to clipboard
\left(x-5\right)\left(x-2\right)\left(x+4\right)-\left(x-5\right)\left(x-4\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Variable x cannot be equal to any of the values -4,2,4,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-4\right)\left(x-2\right)\left(x+4\right), the least common multiple of x-4,x+4,x-5,x-2.
\left(x^{2}-7x+10\right)\left(x+4\right)-\left(x-5\right)\left(x-4\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-5 by x-2 and combine like terms.
x^{3}-3x^{2}-18x+40-\left(x-5\right)\left(x-4\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x^{2}-7x+10 by x+4 and combine like terms.
x^{3}-3x^{2}-18x+40-\left(x^{2}-9x+20\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-5 by x-4 and combine like terms.
x^{3}-3x^{2}-18x+40-\left(x^{3}-11x^{2}+38x-40\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x^{2}-9x+20 by x-2 and combine like terms.
x^{3}-3x^{2}-18x+40-x^{3}+11x^{2}-38x+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
To find the opposite of x^{3}-11x^{2}+38x-40, find the opposite of each term.
-3x^{2}-18x+40+11x^{2}-38x+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Combine x^{3} and -x^{3} to get 0.
8x^{2}-18x+40-38x+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Combine -3x^{2} and 11x^{2} to get 8x^{2}.
8x^{2}-56x+40+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Combine -18x and -38x to get -56x.
8x^{2}-56x+80=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Add 40 and 40 to get 80.
8x^{2}-56x+80=x^{3}-16x-2x^{2}+32-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-2 by x^{2}-16.
8x^{2}-56x+80=x^{3}-16x-2x^{2}+32-\left(x^{3}-16x-5x^{2}+80\right)
Use the distributive property to multiply x-5 by x^{2}-16.
8x^{2}-56x+80=x^{3}-16x-2x^{2}+32-x^{3}+16x+5x^{2}-80
To find the opposite of x^{3}-16x-5x^{2}+80, find the opposite of each term.
8x^{2}-56x+80=-16x-2x^{2}+32+16x+5x^{2}-80
Combine x^{3} and -x^{3} to get 0.
8x^{2}-56x+80=-2x^{2}+32+5x^{2}-80
Combine -16x and 16x to get 0.
8x^{2}-56x+80=3x^{2}+32-80
Combine -2x^{2} and 5x^{2} to get 3x^{2}.
8x^{2}-56x+80=3x^{2}-48
Subtract 80 from 32 to get -48.
8x^{2}-56x+80-3x^{2}=-48
Subtract 3x^{2} from both sides.
5x^{2}-56x+80=-48
Combine 8x^{2} and -3x^{2} to get 5x^{2}.
5x^{2}-56x+80+48=0
Add 48 to both sides.
5x^{2}-56x+128=0
Add 80 and 48 to get 128.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 5\times 128}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -56 for b, and 128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 5\times 128}}{2\times 5}
Square -56.
x=\frac{-\left(-56\right)±\sqrt{3136-20\times 128}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-56\right)±\sqrt{3136-2560}}{2\times 5}
Multiply -20 times 128.
x=\frac{-\left(-56\right)±\sqrt{576}}{2\times 5}
Add 3136 to -2560.
x=\frac{-\left(-56\right)±24}{2\times 5}
Take the square root of 576.
x=\frac{56±24}{2\times 5}
The opposite of -56 is 56.
x=\frac{56±24}{10}
Multiply 2 times 5.
x=\frac{80}{10}
Now solve the equation x=\frac{56±24}{10} when ± is plus. Add 56 to 24.
x=8
Divide 80 by 10.
x=\frac{32}{10}
Now solve the equation x=\frac{56±24}{10} when ± is minus. Subtract 24 from 56.
x=\frac{16}{5}
Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
x=8 x=\frac{16}{5}
The equation is now solved.
\left(x-5\right)\left(x-2\right)\left(x+4\right)-\left(x-5\right)\left(x-4\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Variable x cannot be equal to any of the values -4,2,4,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-4\right)\left(x-2\right)\left(x+4\right), the least common multiple of x-4,x+4,x-5,x-2.
\left(x^{2}-7x+10\right)\left(x+4\right)-\left(x-5\right)\left(x-4\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-5 by x-2 and combine like terms.
x^{3}-3x^{2}-18x+40-\left(x-5\right)\left(x-4\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x^{2}-7x+10 by x+4 and combine like terms.
x^{3}-3x^{2}-18x+40-\left(x^{2}-9x+20\right)\left(x-2\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-5 by x-4 and combine like terms.
x^{3}-3x^{2}-18x+40-\left(x^{3}-11x^{2}+38x-40\right)=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x^{2}-9x+20 by x-2 and combine like terms.
x^{3}-3x^{2}-18x+40-x^{3}+11x^{2}-38x+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
To find the opposite of x^{3}-11x^{2}+38x-40, find the opposite of each term.
-3x^{2}-18x+40+11x^{2}-38x+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Combine x^{3} and -x^{3} to get 0.
8x^{2}-18x+40-38x+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Combine -3x^{2} and 11x^{2} to get 8x^{2}.
8x^{2}-56x+40+40=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Combine -18x and -38x to get -56x.
8x^{2}-56x+80=\left(x-2\right)\left(x^{2}-16\right)-\left(x-5\right)\left(x^{2}-16\right)
Add 40 and 40 to get 80.
8x^{2}-56x+80=x^{3}-16x-2x^{2}+32-\left(x-5\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-2 by x^{2}-16.
8x^{2}-56x+80=x^{3}-16x-2x^{2}+32-\left(x^{3}-16x-5x^{2}+80\right)
Use the distributive property to multiply x-5 by x^{2}-16.
8x^{2}-56x+80=x^{3}-16x-2x^{2}+32-x^{3}+16x+5x^{2}-80
To find the opposite of x^{3}-16x-5x^{2}+80, find the opposite of each term.
8x^{2}-56x+80=-16x-2x^{2}+32+16x+5x^{2}-80
Combine x^{3} and -x^{3} to get 0.
8x^{2}-56x+80=-2x^{2}+32+5x^{2}-80
Combine -16x and 16x to get 0.
8x^{2}-56x+80=3x^{2}+32-80
Combine -2x^{2} and 5x^{2} to get 3x^{2}.
8x^{2}-56x+80=3x^{2}-48
Subtract 80 from 32 to get -48.
8x^{2}-56x+80-3x^{2}=-48
Subtract 3x^{2} from both sides.
5x^{2}-56x+80=-48
Combine 8x^{2} and -3x^{2} to get 5x^{2}.
5x^{2}-56x=-48-80
Subtract 80 from both sides.
5x^{2}-56x=-128
Subtract 80 from -48 to get -128.
\frac{5x^{2}-56x}{5}=-\frac{128}{5}
Divide both sides by 5.
x^{2}-\frac{56}{5}x=-\frac{128}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{56}{5}x+\left(-\frac{28}{5}\right)^{2}=-\frac{128}{5}+\left(-\frac{28}{5}\right)^{2}
Divide -\frac{56}{5}, the coefficient of the x term, by 2 to get -\frac{28}{5}. Then add the square of -\frac{28}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{56}{5}x+\frac{784}{25}=-\frac{128}{5}+\frac{784}{25}
Square -\frac{28}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{56}{5}x+\frac{784}{25}=\frac{144}{25}
Add -\frac{128}{5} to \frac{784}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{28}{5}\right)^{2}=\frac{144}{25}
Factor x^{2}-\frac{56}{5}x+\frac{784}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{28}{5}\right)^{2}}=\sqrt{\frac{144}{25}}
Take the square root of both sides of the equation.
x-\frac{28}{5}=\frac{12}{5} x-\frac{28}{5}=-\frac{12}{5}
Simplify.
x=8 x=\frac{16}{5}
Add \frac{28}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}