Solve for m (complex solution)
m=-\frac{x+7}{x-5}
x\neq 5\text{ and }x\neq 4\text{ and }x\neq -4
Solve for m
m=-\frac{x+7}{x-5}
x\neq 5\text{ and }|x|\neq 4
Solve for x
x=-\frac{7-5m}{m+1}
m\neq 11\text{ and }m\neq -1\text{ and }m\neq \frac{1}{3}
Graph
Share
Copied to clipboard
x+4+\left(x-4\right)m=m-3
Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x-4,x+4,x^{2}-16.
x+4+xm-4m=m-3
Use the distributive property to multiply x-4 by m.
x+4+xm-4m-m=-3
Subtract m from both sides.
x+4+xm-5m=-3
Combine -4m and -m to get -5m.
4+xm-5m=-3-x
Subtract x from both sides.
xm-5m=-3-x-4
Subtract 4 from both sides.
xm-5m=-7-x
Subtract 4 from -3 to get -7.
\left(x-5\right)m=-7-x
Combine all terms containing m.
\left(x-5\right)m=-x-7
The equation is in standard form.
\frac{\left(x-5\right)m}{x-5}=\frac{-x-7}{x-5}
Divide both sides by x-5.
m=\frac{-x-7}{x-5}
Dividing by x-5 undoes the multiplication by x-5.
m=-\frac{x+7}{x-5}
Divide -7-x by x-5.
x+4+\left(x-4\right)m=m-3
Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x-4,x+4,x^{2}-16.
x+4+xm-4m=m-3
Use the distributive property to multiply x-4 by m.
x+4+xm-4m-m=-3
Subtract m from both sides.
x+4+xm-5m=-3
Combine -4m and -m to get -5m.
4+xm-5m=-3-x
Subtract x from both sides.
xm-5m=-3-x-4
Subtract 4 from both sides.
xm-5m=-7-x
Subtract 4 from -3 to get -7.
\left(x-5\right)m=-7-x
Combine all terms containing m.
\left(x-5\right)m=-x-7
The equation is in standard form.
\frac{\left(x-5\right)m}{x-5}=\frac{-x-7}{x-5}
Divide both sides by x-5.
m=\frac{-x-7}{x-5}
Dividing by x-5 undoes the multiplication by x-5.
m=-\frac{x+7}{x-5}
Divide -7-x by x-5.
x+4+\left(x-4\right)m=m-3
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x-4,x+4,x^{2}-16.
x+4+xm-4m=m-3
Use the distributive property to multiply x-4 by m.
x+xm-4m=m-3-4
Subtract 4 from both sides.
x+xm-4m=m-7
Subtract 4 from -3 to get -7.
x+xm=m-7+4m
Add 4m to both sides.
x+xm=5m-7
Combine m and 4m to get 5m.
\left(1+m\right)x=5m-7
Combine all terms containing x.
\left(m+1\right)x=5m-7
The equation is in standard form.
\frac{\left(m+1\right)x}{m+1}=\frac{5m-7}{m+1}
Divide both sides by 1+m.
x=\frac{5m-7}{m+1}
Dividing by 1+m undoes the multiplication by 1+m.
x=\frac{5m-7}{m+1}\text{, }x\neq -4\text{ and }x\neq 4
Variable x cannot be equal to any of the values -4,4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}