Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+4}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}-\frac{2\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right)\left(x-2\right) and x\left(x^{2}+4\right) is x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right). Multiply \frac{1}{x\left(x+2\right)\left(x-2\right)} times \frac{x^{2}+4}{x^{2}+4}. Multiply \frac{2}{x\left(x^{2}+4\right)} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{x^{2}+4-2\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
Since \frac{x^{2}+4}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)} and \frac{2\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4-2x^{2}-4x+4x+8}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
Do the multiplications in x^{2}+4-2\left(x-2\right)\left(x+2\right).
\frac{-x^{2}+12}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
Combine like terms in x^{2}+4-2x^{2}-4x+4x+8.
\frac{-x^{2}+12}{x^{5}-16x}
Expand x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right).
\frac{x^{2}+4}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}-\frac{2\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right)\left(x-2\right) and x\left(x^{2}+4\right) is x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right). Multiply \frac{1}{x\left(x+2\right)\left(x-2\right)} times \frac{x^{2}+4}{x^{2}+4}. Multiply \frac{2}{x\left(x^{2}+4\right)} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{x^{2}+4-2\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
Since \frac{x^{2}+4}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)} and \frac{2\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4-2x^{2}-4x+4x+8}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
Do the multiplications in x^{2}+4-2\left(x-2\right)\left(x+2\right).
\frac{-x^{2}+12}{x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)}
Combine like terms in x^{2}+4-2x^{2}-4x+4x+8.
\frac{-x^{2}+12}{x^{5}-16x}
Expand x\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right).