Solve for a
a=\frac{1-2x}{x^{2}}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{a+1}+1}{a}\text{; }x=\frac{\sqrt{a+1}-1}{a}\text{, }&a\neq 0\\x=\frac{1}{2}\text{, }&a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{a+1}+1}{a}\text{; }x=\frac{\sqrt{a+1}-1}{a}\text{, }&a\neq 0\text{ and }a\geq -1\\x=\frac{1}{2}\text{, }&a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
1-axx+x\left(-2\right)=0
Multiply both sides of the equation by x.
1-ax^{2}+x\left(-2\right)=0
Multiply x and x to get x^{2}.
-ax^{2}+x\left(-2\right)=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-ax^{2}=-1-x\left(-2\right)
Subtract x\left(-2\right) from both sides.
-ax^{2}=-1+2x
Multiply -1 and -2 to get 2.
\left(-x^{2}\right)a=2x-1
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{2x-1}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{2x-1}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-\frac{2}{x}+\frac{1}{x^{2}}
Divide -1+2x by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}