Solve for x
x = \frac{5 \sqrt{481} - 5}{16} \approx 6.541160062
x=\frac{-5\sqrt{481}-5}{16}\approx -7.166160062
Graph
Share
Copied to clipboard
75x+750+75x=16x\left(x+10\right)
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 75x\left(x+10\right), the least common multiple of x,x+10,75.
150x+750=16x\left(x+10\right)
Combine 75x and 75x to get 150x.
150x+750=16x^{2}+160x
Use the distributive property to multiply 16x by x+10.
150x+750-16x^{2}=160x
Subtract 16x^{2} from both sides.
150x+750-16x^{2}-160x=0
Subtract 160x from both sides.
-10x+750-16x^{2}=0
Combine 150x and -160x to get -10x.
-16x^{2}-10x+750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-16\right)\times 750}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, -10 for b, and 750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-16\right)\times 750}}{2\left(-16\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+64\times 750}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-\left(-10\right)±\sqrt{100+48000}}{2\left(-16\right)}
Multiply 64 times 750.
x=\frac{-\left(-10\right)±\sqrt{48100}}{2\left(-16\right)}
Add 100 to 48000.
x=\frac{-\left(-10\right)±10\sqrt{481}}{2\left(-16\right)}
Take the square root of 48100.
x=\frac{10±10\sqrt{481}}{2\left(-16\right)}
The opposite of -10 is 10.
x=\frac{10±10\sqrt{481}}{-32}
Multiply 2 times -16.
x=\frac{10\sqrt{481}+10}{-32}
Now solve the equation x=\frac{10±10\sqrt{481}}{-32} when ± is plus. Add 10 to 10\sqrt{481}.
x=\frac{-5\sqrt{481}-5}{16}
Divide 10+10\sqrt{481} by -32.
x=\frac{10-10\sqrt{481}}{-32}
Now solve the equation x=\frac{10±10\sqrt{481}}{-32} when ± is minus. Subtract 10\sqrt{481} from 10.
x=\frac{5\sqrt{481}-5}{16}
Divide 10-10\sqrt{481} by -32.
x=\frac{-5\sqrt{481}-5}{16} x=\frac{5\sqrt{481}-5}{16}
The equation is now solved.
75x+750+75x=16x\left(x+10\right)
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 75x\left(x+10\right), the least common multiple of x,x+10,75.
150x+750=16x\left(x+10\right)
Combine 75x and 75x to get 150x.
150x+750=16x^{2}+160x
Use the distributive property to multiply 16x by x+10.
150x+750-16x^{2}=160x
Subtract 16x^{2} from both sides.
150x+750-16x^{2}-160x=0
Subtract 160x from both sides.
-10x+750-16x^{2}=0
Combine 150x and -160x to get -10x.
-10x-16x^{2}=-750
Subtract 750 from both sides. Anything subtracted from zero gives its negation.
-16x^{2}-10x=-750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}-10x}{-16}=-\frac{750}{-16}
Divide both sides by -16.
x^{2}+\left(-\frac{10}{-16}\right)x=-\frac{750}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}+\frac{5}{8}x=-\frac{750}{-16}
Reduce the fraction \frac{-10}{-16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{8}x=\frac{375}{8}
Reduce the fraction \frac{-750}{-16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=\frac{375}{8}+\left(\frac{5}{16}\right)^{2}
Divide \frac{5}{8}, the coefficient of the x term, by 2 to get \frac{5}{16}. Then add the square of \frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{375}{8}+\frac{25}{256}
Square \frac{5}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{12025}{256}
Add \frac{375}{8} to \frac{25}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{16}\right)^{2}=\frac{12025}{256}
Factor x^{2}+\frac{5}{8}x+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{\frac{12025}{256}}
Take the square root of both sides of the equation.
x+\frac{5}{16}=\frac{5\sqrt{481}}{16} x+\frac{5}{16}=-\frac{5\sqrt{481}}{16}
Simplify.
x=\frac{5\sqrt{481}-5}{16} x=\frac{-5\sqrt{481}-5}{16}
Subtract \frac{5}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}