Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2+x\left(x-14\right)=\left(x-2\right)\left(x-1\right)\times 2
Variable x cannot be equal to any of the values 0,1,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right)\left(x-1\right), the least common multiple of x^{2}-x,x^{2}-3x+2,x.
x-2+x^{2}-14x=\left(x-2\right)\left(x-1\right)\times 2
Use the distributive property to multiply x by x-14.
-13x-2+x^{2}=\left(x-2\right)\left(x-1\right)\times 2
Combine x and -14x to get -13x.
-13x-2+x^{2}=\left(x^{2}-3x+2\right)\times 2
Use the distributive property to multiply x-2 by x-1 and combine like terms.
-13x-2+x^{2}=2x^{2}-6x+4
Use the distributive property to multiply x^{2}-3x+2 by 2.
-13x-2+x^{2}-2x^{2}=-6x+4
Subtract 2x^{2} from both sides.
-13x-2-x^{2}=-6x+4
Combine x^{2} and -2x^{2} to get -x^{2}.
-13x-2-x^{2}+6x=4
Add 6x to both sides.
-7x-2-x^{2}=4
Combine -13x and 6x to get -7x.
-7x-2-x^{2}-4=0
Subtract 4 from both sides.
-7x-6-x^{2}=0
Subtract 4 from -2 to get -6.
-x^{2}-7x-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=-\left(-6\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-1 b=-6
The solution is the pair that gives sum -7.
\left(-x^{2}-x\right)+\left(-6x-6\right)
Rewrite -x^{2}-7x-6 as \left(-x^{2}-x\right)+\left(-6x-6\right).
x\left(-x-1\right)+6\left(-x-1\right)
Factor out x in the first and 6 in the second group.
\left(-x-1\right)\left(x+6\right)
Factor out common term -x-1 by using distributive property.
x=-1 x=-6
To find equation solutions, solve -x-1=0 and x+6=0.
x-2+x\left(x-14\right)=\left(x-2\right)\left(x-1\right)\times 2
Variable x cannot be equal to any of the values 0,1,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right)\left(x-1\right), the least common multiple of x^{2}-x,x^{2}-3x+2,x.
x-2+x^{2}-14x=\left(x-2\right)\left(x-1\right)\times 2
Use the distributive property to multiply x by x-14.
-13x-2+x^{2}=\left(x-2\right)\left(x-1\right)\times 2
Combine x and -14x to get -13x.
-13x-2+x^{2}=\left(x^{2}-3x+2\right)\times 2
Use the distributive property to multiply x-2 by x-1 and combine like terms.
-13x-2+x^{2}=2x^{2}-6x+4
Use the distributive property to multiply x^{2}-3x+2 by 2.
-13x-2+x^{2}-2x^{2}=-6x+4
Subtract 2x^{2} from both sides.
-13x-2-x^{2}=-6x+4
Combine x^{2} and -2x^{2} to get -x^{2}.
-13x-2-x^{2}+6x=4
Add 6x to both sides.
-7x-2-x^{2}=4
Combine -13x and 6x to get -7x.
-7x-2-x^{2}-4=0
Subtract 4 from both sides.
-7x-6-x^{2}=0
Subtract 4 from -2 to get -6.
-x^{2}-7x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -7 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-1\right)}
Add 49 to -24.
x=\frac{-\left(-7\right)±5}{2\left(-1\right)}
Take the square root of 25.
x=\frac{7±5}{2\left(-1\right)}
The opposite of -7 is 7.
x=\frac{7±5}{-2}
Multiply 2 times -1.
x=\frac{12}{-2}
Now solve the equation x=\frac{7±5}{-2} when ± is plus. Add 7 to 5.
x=-6
Divide 12 by -2.
x=\frac{2}{-2}
Now solve the equation x=\frac{7±5}{-2} when ± is minus. Subtract 5 from 7.
x=-1
Divide 2 by -2.
x=-6 x=-1
The equation is now solved.
x-2+x\left(x-14\right)=\left(x-2\right)\left(x-1\right)\times 2
Variable x cannot be equal to any of the values 0,1,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right)\left(x-1\right), the least common multiple of x^{2}-x,x^{2}-3x+2,x.
x-2+x^{2}-14x=\left(x-2\right)\left(x-1\right)\times 2
Use the distributive property to multiply x by x-14.
-13x-2+x^{2}=\left(x-2\right)\left(x-1\right)\times 2
Combine x and -14x to get -13x.
-13x-2+x^{2}=\left(x^{2}-3x+2\right)\times 2
Use the distributive property to multiply x-2 by x-1 and combine like terms.
-13x-2+x^{2}=2x^{2}-6x+4
Use the distributive property to multiply x^{2}-3x+2 by 2.
-13x-2+x^{2}-2x^{2}=-6x+4
Subtract 2x^{2} from both sides.
-13x-2-x^{2}=-6x+4
Combine x^{2} and -2x^{2} to get -x^{2}.
-13x-2-x^{2}+6x=4
Add 6x to both sides.
-7x-2-x^{2}=4
Combine -13x and 6x to get -7x.
-7x-x^{2}=4+2
Add 2 to both sides.
-7x-x^{2}=6
Add 4 and 2 to get 6.
-x^{2}-7x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-7x}{-1}=\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{7}{-1}\right)x=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+7x=\frac{6}{-1}
Divide -7 by -1.
x^{2}+7x=-6
Divide 6 by -1.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-6+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=-6+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{25}{4}
Add -6 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{5}{2} x+\frac{7}{2}=-\frac{5}{2}
Simplify.
x=-1 x=-6
Subtract \frac{7}{2} from both sides of the equation.