Solve for a
a=-\frac{bx-6b-1}{x+1}
x\neq 6\text{ and }x\neq -1
Solve for b
b=-\frac{ax+a-1}{x-6}
x\neq 6\text{ and }x\neq -1
Graph
Share
Copied to clipboard
1=\left(x+1\right)a+\left(x-6\right)b
Multiply both sides of the equation by \left(x-6\right)\left(x+1\right), the least common multiple of x^{2}-5x-6,x-6,x+1.
1=xa+a+\left(x-6\right)b
Use the distributive property to multiply x+1 by a.
1=xa+a+xb-6b
Use the distributive property to multiply x-6 by b.
xa+a+xb-6b=1
Swap sides so that all variable terms are on the left hand side.
xa+a-6b=1-xb
Subtract xb from both sides.
xa+a=1-xb+6b
Add 6b to both sides.
\left(x+1\right)a=1-xb+6b
Combine all terms containing a.
\left(x+1\right)a=1+6b-bx
The equation is in standard form.
\frac{\left(x+1\right)a}{x+1}=\frac{1+6b-bx}{x+1}
Divide both sides by x+1.
a=\frac{1+6b-bx}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
1=\left(x+1\right)a+\left(x-6\right)b
Multiply both sides of the equation by \left(x-6\right)\left(x+1\right), the least common multiple of x^{2}-5x-6,x-6,x+1.
1=xa+a+\left(x-6\right)b
Use the distributive property to multiply x+1 by a.
1=xa+a+xb-6b
Use the distributive property to multiply x-6 by b.
xa+a+xb-6b=1
Swap sides so that all variable terms are on the left hand side.
a+xb-6b=1-xa
Subtract xa from both sides.
xb-6b=1-xa-a
Subtract a from both sides.
\left(x-6\right)b=1-xa-a
Combine all terms containing b.
\left(x-6\right)b=1-a-ax
The equation is in standard form.
\frac{\left(x-6\right)b}{x-6}=\frac{1-a-ax}{x-6}
Divide both sides by -6+x.
b=\frac{1-a-ax}{x-6}
Dividing by -6+x undoes the multiplication by -6+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}