Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{1}{2\left(x-2\right)\left(x-1\right)}+\frac{3}{2x^{2}-2x-4}
Factor x^{2}-1. Factor 2x^{2}-6x+4.
\frac{2\left(x-2\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}-\frac{x+1}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{3}{2x^{2}-2x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and 2\left(x-2\right)\left(x-1\right) is 2\left(x-2\right)\left(x-1\right)\left(x+1\right). Multiply \frac{1}{\left(x-1\right)\left(x+1\right)} times \frac{2\left(x-2\right)}{2\left(x-2\right)}. Multiply \frac{1}{2\left(x-2\right)\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{2\left(x-2\right)-\left(x+1\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{3}{2x^{2}-2x-4}
Since \frac{2\left(x-2\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)} and \frac{x+1}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-4-x-1}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{3}{2x^{2}-2x-4}
Do the multiplications in 2\left(x-2\right)-\left(x+1\right).
\frac{x-5}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{3}{2x^{2}-2x-4}
Combine like terms in 2x-4-x-1.
\frac{x-5}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{3}{2\left(x-2\right)\left(x+1\right)}
Factor 2x^{2}-2x-4.
\frac{x-5}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-2\right)\left(x-1\right)\left(x+1\right) and 2\left(x-2\right)\left(x+1\right) is 2\left(x-2\right)\left(x-1\right)\left(x+1\right). Multiply \frac{3}{2\left(x-2\right)\left(x+1\right)} times \frac{x-1}{x-1}.
\frac{x-5+3\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Since \frac{x-5}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)} and \frac{3\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x-5+3x-3}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Do the multiplications in x-5+3\left(x-1\right).
\frac{4x-8}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Combine like terms in x-5+3x-3.
\frac{4\left(x-2\right)}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{4x-8}{2\left(x-2\right)\left(x-1\right)\left(x+1\right)}.
\frac{2}{\left(x-1\right)\left(x+1\right)}
Cancel out 2\left(x-2\right) in both numerator and denominator.
\frac{2}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).