Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{x^{2}}+\frac{1}{\frac{1}{x^{2}}+\frac{xx^{2}}{x^{2}}}-\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x^{2}}{x^{2}}.
\frac{1}{x^{2}}+\frac{1}{\frac{1+xx^{2}}{x^{2}}}-\frac{1}{x}
Since \frac{1}{x^{2}} and \frac{xx^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{1}{x^{2}}+\frac{1}{\frac{1+x^{3}}{x^{2}}}-\frac{1}{x}
Do the multiplications in 1+xx^{2}.
\frac{1}{x^{2}}+\frac{x^{2}}{1+x^{3}}-\frac{1}{x}
Divide 1 by \frac{1+x^{3}}{x^{2}} by multiplying 1 by the reciprocal of \frac{1+x^{3}}{x^{2}}.
\frac{1}{x^{2}}+\frac{x^{2}}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{1}{x}
Factor 1+x^{3}.
\frac{\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}+\frac{x^{2}x^{2}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}-\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x+1\right)\left(x^{2}-x+1\right) is \left(x+1\right)x^{2}\left(x^{2}-x+1\right). Multiply \frac{1}{x^{2}} times \frac{\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}. Multiply \frac{x^{2}}{\left(x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{2}}{x^{2}}.
\frac{\left(x+1\right)\left(x^{2}-x+1\right)+x^{2}x^{2}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}-\frac{1}{x}
Since \frac{\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)} and \frac{x^{2}x^{2}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-x^{2}+x+x^{2}-x+1+x^{4}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}-\frac{1}{x}
Do the multiplications in \left(x+1\right)\left(x^{2}-x+1\right)+x^{2}x^{2}.
\frac{x^{3}+1+x^{4}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}-\frac{1}{x}
Combine like terms in x^{3}-x^{2}+x+x^{2}-x+1+x^{4}.
\frac{x^{3}+1+x^{4}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}-\frac{x\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)x^{2}\left(x^{2}-x+1\right) and x is \left(x+1\right)x^{2}\left(x^{2}-x+1\right). Multiply \frac{1}{x} times \frac{x\left(x+1\right)\left(x^{2}-x+1\right)}{x\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x^{3}+1+x^{4}-x\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}
Since \frac{x^{3}+1+x^{4}}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)} and \frac{x\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+1+x^{4}-x^{4}+x^{3}-x^{2}-x^{3}+x^{2}-x}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}
Do the multiplications in x^{3}+1+x^{4}-x\left(x+1\right)\left(x^{2}-x+1\right).
\frac{x^{3}+1-x}{\left(x+1\right)x^{2}\left(x^{2}-x+1\right)}
Combine like terms in x^{3}+1+x^{4}-x^{4}+x^{3}-x^{2}-x^{3}+x^{2}-x.
\frac{x^{3}+1-x}{x^{5}+x^{2}}
Expand \left(x+1\right)x^{2}\left(x^{2}-x+1\right).